Answer:
An observational study
Explanation:
observational studies are those a study where the researcher observes the effect of a defy factor, diagnostic test, treatment or other intervention without trying to change who is or isn't exposed to it. Cohort study and control studies are of two observational studies. These are the part of fundamental of epidemiological research. These are called observational studies because the investigators observe individuals without manipulation and intervention. These studies are an important category of study design. Well, design observational studies maybe the next best method to address these types of questions.
Answer:
![\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4x^\bigg{\frac{3}{2}}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4x%7D%7D%20%5Cbigg%5D%20%3D%20%5Cfrac%7B-1%7D%7B4x%5E%5Cbigg%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
Exponential Properties
- Exponential Property [Rewrite]:

- Exponential Property [Root Rewrite]:
![\displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Csqrt%5Bn%5D%7Bx%7D%20%3D%20x%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D)
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
Derivative Rule [Basic Power Rule]:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify.</em>
![\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4x%7D%7D%20%5Cbigg%5D)
<u>Step 2: Differentiate</u>
- Simplify:
![\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \bigg( \frac{1}{2\sqrt{x}} \bigg)'](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4x%7D%7D%20%5Cbigg%5D%20%3D%20%5Cbigg%28%20%5Cfrac%7B1%7D%7B2%5Csqrt%7Bx%7D%7D%20%5Cbigg%29%27)
- Rewrite [Derivative Property - Multiplied Constant]:
![\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{1}{\sqrt{x}} \bigg)'](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4x%7D%7D%20%5Cbigg%5D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Cbigg%28%20%5Cfrac%7B1%7D%7B%5Csqrt%7Bx%7D%7D%20%5Cbigg%29%27)
- Rewrite [Exponential Rule - Root Rewrite]:
![\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{1}{x^\Big{\frac{1}{2}}} \bigg)'](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4x%7D%7D%20%5Cbigg%5D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Cbigg%28%20%5Cfrac%7B1%7D%7Bx%5E%5CBig%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%20%5Cbigg%29%27)
- Rewrite [Exponential Rule - Rewrite]:
![\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( x^\bigg{\frac{-1}{2}} \bigg)'](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4x%7D%7D%20%5Cbigg%5D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Cbigg%28%20x%5E%5Cbigg%7B%5Cfrac%7B-1%7D%7B2%7D%7D%20%5Cbigg%29%27)
- Derivative Rule [Basic Power Rule]:
![\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{-1}{2} x^\bigg{\frac{-3}{2}} \bigg)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4x%7D%7D%20%5Cbigg%5D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Cbigg%28%20%5Cfrac%7B-1%7D%7B2%7D%20x%5E%5Cbigg%7B%5Cfrac%7B-3%7D%7B2%7D%7D%20%5Cbigg%29)
- Simplify:
![\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4} x^\bigg{\frac{-3}{2}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4x%7D%7D%20%5Cbigg%5D%20%3D%20%5Cfrac%7B-1%7D%7B4%7D%20x%5E%5Cbigg%7B%5Cfrac%7B-3%7D%7B2%7D%7D)
- Rewrite [Exponential Rule - Rewrite]:
![\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4x^\bigg{\frac{3}{2}}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4x%7D%7D%20%5Cbigg%5D%20%3D%20%5Cfrac%7B-1%7D%7B4x%5E%5Cbigg%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation
Answer:
7x + 32 and 123
Step-by-step explanation:
One way to divide is to use the divisor as a factor in the numerator
Consider the numerator
7x(x - 4) + 28x + 4x - 5
= 7x(x - 4) + 32(x - 4) + 128 - 5
= 7x(x - 4) + 32(x - 4) + 123
quotient = 7x + 32 and remainder = 123
= x + 32 + 
determine the range of the function in the table below. x f(x) 0 -4 2 2 4 8 {0, 2, 4} {-4, 2, 8} {(0, -4), (2, 2), (4, 8)} {(-4,
miv72 [106K]
<span>the range of the function in the table is the values under f(x). i.e. </span><span>{-4, 2, 8}</span>
Answer:
1080hrs
Step-by-step explanation:

days cancel, redefine week as =5days

weeks cancel redefine 4 weeks = 1 month

months cancel, redefine 9months= 1years

1080hrs per year (if I mathed 120x9 correctly that is, I didn't use a calculator so please double check that 120x9=1080)