Answer:
b. 485 kPa
Explanation:
Gay-Lussac's law express that the pressure of a gas under constant volume is directly proportional to the absolute temperature. The equation is:
P1T2 = P2T1
<em>P is pressure and T absolute temperature of 1, initial state and 2, final state of the gas</em>
<em>Where P1 = 74psi</em>
<em>T2 = 20°C + 273.15 = 293.15K</em>
<em>P2 = ?</em>
<em>T1 = (95°F -32) * 5/9 + 273.15 = 308.15K</em>
<em />
Replacing:
74psi*293.15K = P2*308.15K
70.4psi
In kPa:
70.4psi * (6.895kPa / 1psi) =
<h3>b. 485 kPa
</h3>
Answer:
D
Explanation:
The electromagnetic radiation is emitted due to a particle moves from a higher to a lower energy state
Answer:
Mass = 1.33 g
Explanation:
Given data:
Mass of argon required = ?
Volume of bulb = 0.745 L
Temperature and pressure = standard
Solution:
We will calculate the number of moles of argon first.
Formula:
PV = nRT
R = general gas constant = 0.0821 atm.L/mol.K
By putting values,
1 atm ×0.745 L = n × 0.0821 atm.L/mol.K× 273.15 K
0.745 atm. L = n × 22.43 atm.L/mol
n = 0.745 atm. L / 22.43 atm.L/mol
n = 0.0332 mol
Mass of argon:
Mass = number of moles × molar mass
Mass = 0.0332 mol × 39.95 g/mol
Mass = 1.33 g
Answer:
Explanation:
Function. The mitochondrion is the site of ATP synthesis for the cell. The number of mitochondria found in a cell are therefore a good indicator of the cell's rate of metabolic activity; cells which are very metabolically active, such as hepatocytes, will have many mitochondria.