<span>The products of the light-dependent reactions are used to help 'fuel' the light-independent reactions.
</span><span>Example:
NADPH and ATP are produced during the light-dependent reaction for use in the light-independent reaction (the Calvin Cycle). </span>
Answer : (C) Hafnium is the most likely identity of the given substance.
Solution : Given,
Mass of given substance (m) = 46.9 g
Volume of given substance (V) = 3.5 
First, find the Density of given substance.
Formula used :

Now,put all the values in this formula, we get
= 13.4 g/
So, we conclude that the density of given substance (13.4 g/
) is approximately equal to the density of Mercury and Hafnium (13.53 and 13.31 g/
respectively).
According to the question the substance is solid at room temperature but Mercury is liquid at room temperature. So, Mercury is not identical to the given substance.
Another element i.e, Hafnium is the element whose density is approximately equal to the given substance and also solid at room temperature. And we know that the melting point of solid is high.
So, Hafnium is the most likely element which is the identity of the given substance.
The Lewis Structure of HCN is shown below,
Number of Bonding Electrons: In HCN Hydrogen is bonded to Carbon through single bond and Nitrogen is bonded to Carbon through Triple Bond. Single bond is formed by two bonding electrons, while, triple bond is formed by six bonding electrons, Hence,
Number of Bonding Electrons = 8
Number of Non-Bonding Electrons:
In HCN there is only one lone pair of electron present on Nitrogen atom which is not taking part in bonding. Hence,
Number of Non-Bonding Electrons = 2
Result: Number of Bonding Electrons = 8 Number of Non-Bonding Electrons = 2
An anchoring phenomenon anchors all of the learning within a unit. So, it is a unit level event that the classroom is trying to make sense of as they engage in a series of lessons.
Since the questions the students ask about the anchor drive the learning within the unit, the anchor should be complex and require an understanding of several big science ideas to explain.
At strategic moments, the class revisits the anchoring phenomenon to review their initial questions to see which they have answered, which they are making progress on, and what new questions they may have to help us continue learning about the phenomenon.
Throughout the unit, the classroom and each student should be given opportunities to share their thinking and how it relates to the anchoring phenomenon.
YOU SHOULD PUT IT IN YOUR OWN WORDS THOUGH <3
<span>A submerged object displaces a volume of liquid equal to the volume of the object. One milliliter (1 mL) of water has a volume of 1 cubic centimeter (1cm3).</span>