<u>We are given:</u>
Mass of ice = 21 grams
The ice is already at 0°c, the temperature at which it melts to form water
Molar heat of fusion of Ice = 6.02 kJ/mol
<u>Finding the energy required:</u>
<u>Number of moles of Ice: </u>
Molar mass of water = 18 g/mol
Number of moles = given mass/ molar mass
Number of moles = 21 / 18 = 7/6 moles
<u>Energy required to melt the given amount of ice:</u>
Energy = number of moles * molar heat of fusion
Energy = (7/6) * (6.02)
Energy = 7.02 kJ OR 7020 joules
Answer:
Atoms He (Avogadro’s number) → Moles of He (molar mass of He) → Mass of He
• molar mass of He (from the periodic table) = 4.003 g/mol
• Avogadro’s Number: Avogadro’s number gives us the number of entities present in 1 mole: 6.022 × 1023 He atoms in 1 mole of He
hope this is help full please mark me Brainliest
The gravitational pull generates this cool thing called tidal force, which kinda pushes the water to the side closest to the moon. When the tide is high, that means the moons closer to that point than somewhere else.
Two sides will always have high tide and two sides will always have low tide.
Following laboratory safety protocols such as wearing personal protective equipment will protect John when the accident occurred.
<h3>What are laboratory safety protocols?</h3>
Laboratory safety protocols are the protocols put in place to ensure safety in the laboratory.
Laboratory safety protocols include the following:
- always wear personal protective equipment in the laboratory
- do not play in the laboratory
- do not eat in the laboratory
Following laboratory safety protocols will help protect us from accidents which occur in the laboratory.
What happened when john was carefully pouring a chemical into a beaker when the beaker slips and breaks is an example of laboratory accident.
Wearing personal protective equipment will protect John.
In conclusion, following laboratory safety protocols will protect us when accidents occur in the laboratory.
Learn more about laboratory safety protocols at: brainly.com/question/17994387
#SPJ1
Note that the complete question is given as follows:
John is carefully pouring a chemical into a beaker when the beaker slips and breaks. How would laboratory safety protocols help John?