1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dvinal [7]
4 years ago
14

Cos A/1-tan A + sin A/1-cot A =sin A + cos A

Mathematics
1 answer:
Vadim26 [7]4 years ago
5 0
\frac{cosA}{ \frac{cosA}{cosA}- \frac{sinA}{cosA}}+ \frac{sinA}{ \frac{sinA}{sinA}- \frac{cosA}{sinA}  }=sinA+cosA\\  \frac{cosA}{ \frac{cosA-sinA}{cosA}+ \frac{sinA}{ \frac{sinA-cosA}{sinA} }  }=sinA+cosA\\ \frac{ cos^{2}A }{cosA-sinA} }- \frac{sin^{2}A }{cosA-sinA}=sinA+cosA\\
 \frac{ cos^{2}A-sin^{2}A }{cosA-sinA}=sinA+cosA\\cos(2A)=(sinA+cosA)(cosA-sinA)\\
cos(2A)=(sinA+cosA)(sinA-cosA)\\cos(2A)=sin^{2}A - cos^{2}A\\cos2A=cos2A  \\1=1
You might be interested in
What is the solution to<br><br>- 4x + 28 &gt; 12
raketka [301]

Answer:

\large\boxed{x

Step-by-step explanation:

-4x+28>12\qquad\text{subtract 28 from both sides}\\\\-4x>-16\qquad\text{change the signs}\\\\4x

6 0
4 years ago
Find the hypotenuse of a triangle with a base of 11 cm and height of 9 cm.
kondor19780726 [428]

Answer:

\sqrt{202}

Step-by-step explanation:

The image shows the steps to get this answer. I also checked with a calculator.

Hope this helps!

7 0
3 years ago
<img src="https://tex.z-dn.net/?f=%5Clim_%7Bn%20%5Cto%20%5C0%7D%28x%2F%28tan%E2%81%A1%28x%29%29%5E%28cot%E2%81%A1%28x%29%5E2%20%
Viefleur [7K]

It looks like the limit you want to compute is

\displaystyle L = \lim_{x\to0}\left(\frac x{\tan(x)}\right)^{\cot^2(x)}

Rewrite the limand with an exponential and logarithm:

\left(\dfrac{x}{\tan(x)}\right)^{\cot^2(x)} = \exp\left(\cot^2(x) \ln\left(\dfrac{x}{\tan(x)}\right)\right) = \exp\left(\dfrac{\ln\left(\dfrac{x}{\tan(x)}\right)}{\tan^2(x)}\right)

Now, since the exponential function is continuous at 0, we can write

\displaystyle L = \lim_{x\to0} \exp\left(\dfrac{\ln\left(\dfrac{x}{\tan(x)}\right)}{\tan^2(x)}\right) = \exp\left(\lim_{x\to0}\dfrac{\ln\left(\dfrac{x}{\tan(x)}\right)}{\tan^2(x)}\right)

Let <em>M</em> denote the remaining limit.

We have \dfrac x{\tan(x)}\to1 as x\to0, so \ln\left(\dfrac x{\tan(x)}\right)\to0 and \tan^2(x)\to0. Apply L'Hopital's rule:

\displaystyle M = \lim_{x\to0}\dfrac{\ln\left(\dfrac{x}{\tan(x)}\right)}{\tan^2(x)} \\\\ M = \lim_{x\to0}\dfrac{\dfrac{\tan(x)-x\sec^2(x)}{\tan^2(x)}\times\dfrac{\tan(x)}{x}}{2\tan(x)\sec^2(x)}

Simplify and rewrite this in terms of sin and cos :

\displaystyle M = \lim_{x\to0} \dfrac{\dfrac{\tan(x)-x\sec^2(x)}{\tan^2(x)}\times\dfrac{\tan(x)}{x}}{2\tan(x)\sec^2(x)} \\\\ M= \lim_{x\to0}\dfrac{\sin(x)\cos^3(x) - x\cos^2(x)}{2x\sin^2(x)}

As x\to0, we get another 0/0 indeterminate form. Apply L'Hopital's rule again:

\displaystyle M = \lim_{x\to0} \frac{\sin(x)\cos^3(x) - x\cos^2(x)}{2x\sin^2(x)} \\\\ M = \lim_{x\to0} \frac{\cos^4(x) - 3\sin^2(x)\cos^2(x) - \cos^2(x) + 2x\cos(x)\sin(x)}{2\sin^2(x)+4x\sin(x)\cos(x)}

Recall the double angle identity for sin:

sin(2<em>x</em>) = 2 sin(<em>x</em>) cos(<em>x</em>)

Also, in the numerator we have

cos⁴(<em>x</em>) - cos²(<em>x</em>) = cos²(<em>x</em>) (cos²(<em>x</em>) - 1) = - cos²(<em>x</em>) sin²(<em>x</em>) = -1/4 sin²(2<em>x</em>)

So we can simplify <em>M</em> as

\displaystyle M = \lim_{x\to0} \frac{x\sin(2x) - \sin^2(2x)}{2\sin^2(x)+2x\sin(2x)}

This again yields 0/0. Apply L'Hopital's rule again:

\displaystyle M = \lim_{x\to0} \frac{\sin(2x)+2x\cos(2x)-4\sin(2x)\cos(2x)}{2\sin(2x)+4x\cos(2x)+4\sin(x)\cos(x)} \\\\ M = \lim_{x\to0} \frac{\sin(2x) + 2x\cos(2x) - 2\sin(4x)}{4\sin(2x)+4x\cos(2x)}

Once again, this gives 0/0. Apply L'Hopital's rule one last time:

\displaystyle M = \lim_{x\to0}\frac{2\cos(2x)+2\cos(2x)-4x\sin(2x)-8\cos(4x)}{8\cos(2x)+4\cos(2x)-8x\sin(2x)} \\\\ M = \lim_{x\to0} \frac{4\cos(2x)-4x\sin(2x)-8\cos(4x)}{12\cos(2x)-8x\sin(2x)}

Now as x\to0, the terms containing <em>x</em> and sin(<em>nx</em>) all go to 0, and we're left with

M = \dfrac{4-8}{12} = -\dfrac13

Then the original limit is

L = \exp(M) = e^{-1/3} = \boxed{\dfrac1{\sqrt[3]{e}}}

6 0
3 years ago
I need help ASAP plz helppppppppp
HACTEHA [7]

Answer:

C

Sorry no step by step in a hurry.

5 0
3 years ago
A rectangular pool is 20 feet wide and 50 feet long
DENIUS [597]

Answer:

1000ft^{2}

Step-by-step explanation:

50 times 20= 1000

Which is the area.

8 0
3 years ago
Other questions:
  • Hi I've got some maths homework due in for Thursday and I'm wondering if somebody can help it would be good if you could also te
    5·1 answer
  • How many teaspoons are in a pound of cinnamon?
    15·1 answer
  • A patient is to be given 35 milligrams of Demerol every 4 hours. You have Demerol 50 milligrams/milliliter in stock. How many mi
    9·2 answers
  • Show the factors of 5 x y square + 7 x square y by tree diagram​
    10·1 answer
  • An animal shelter spends $1.00 per day to care for each cat and $4.50 per day to care for each dog. Ethan noticed that the shelt
    14·1 answer
  • You are choosing between two different cell phone plans. The first plan charges a rate of 25 cents per minute. The second plan c
    5·1 answer
  • Evaluate f(1) = 3x - 5 when I = -1, 1 = 0, and I = 3. When I = -1, $ (I) = when I = 0, $ (2) = and when I = 3, f (2) =​
    14·1 answer
  • Use the information to answer the following questions.
    13·1 answer
  • You bought a bag of tamales and one of your friends ate 1/5 of the entire bag and another friend ate 1/3 of the whole bag. How m
    6·1 answer
  • The sizes of the angles in degrees of e triangles are.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!