1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PolarNik [594]
3 years ago
10

A raincoat costs $79.25 today. If a similar raincoat cost $52.48 in 1983, what is the CPI? a. 166 b. 151 c. 132 d. 127

Mathematics
2 answers:
Ugo [173]3 years ago
8 0

Answer:

Option b. 151

Step-by-step explanation:

A raincoat costs $79.25 today. If a similar raincoat cost $52.48 in 1983 then we have to calculate the the CPI in 1983.

Since formula to calculate CPI will be

CPI = (Price of raincoat today/Price of raincoat in 1983)×100

CPI = 79.25×100/52.48 = 151

Therefore option b. CPI = 151 is the answer.

tamaranim1 [39]3 years ago
4 0
B. You divide 79.25/52.48 and get 1.51, which translates to 151 percent.
You might be interested in
it takes 2/3 of a day to complete 1/9 of an order of purse. at this rate how long will it take to complete the order
Harrizon [31]
To find how long it takes to complete the order, it will take 9 times of 2/3 of a day to complete an order. 2/3 times 9 equals 18/3 which equals 6 days.
6 0
3 years ago
Select the letter of the correct answer.
sveta [45]
Would it be B which is 51%
as you do 129 devided by 3.3 = 39.1
180-39.1= 141
141 is just over half
4 0
3 years ago
Read 2 more answers
<img src="https://tex.z-dn.net/?f=%5Cint%5Climits%5Ea_b%20%7B%281-x%5E%7B2%7D%20%29%5E%7B3%2F2%7D%20%7D%20%5C%2C%20dx" id="TexFo
Ludmilka [50]

Answer:\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}General Formulas and Concepts:

<u>Pre-Calculus</u>

  • Trigonometric Identities

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Integration

  • Integrals
  • Definite/Indefinite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                    \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

U-Substitution

  • Trigonometric Substitution

Reduction Formula:                                                                                               \displaystyle \int {cos^n(x)} \, dx = \frac{n - 1}{n}\int {cos^{n - 2}(x)} \, dx + \frac{cos^{n - 1}(x)sin(x)}{n}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution (trigonometric substitution).</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle x = sin(u)
  2. [<em>u</em>] Differentiate [Trigonometric Differentiation]:                                         \displaystyle dx = cos(u) \ du
  3. Rewrite <em>u</em>:                                                                                                       \displaystyle u = arcsin(x)

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Trigonometric Substitution:                                                           \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[1 - sin^2(u)]^\Big{\frac{3}{2}} \, du
  2. [Integrand] Rewrite:                                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[cos^2(u)]^\Big{\frac{3}{2}} \, du
  3. [Integrand] Simplify:                                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos^4(u)} \, du
  4. [Integral] Reduction Formula:                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{4 - 1}{4}\int \limits^a_b {cos^{4 - 2}(x)} \, dx + \frac{cos^{4 - 1}(u)sin(u)}{4} \bigg| \limits^a_b
  5. [Integral] Simplify:                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4}\int\limits^a_b {cos^2(u)} \, du
  6. [Integral] Reduction Formula:                                                                          \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg|\limits^a_b + \frac{3}{4} \bigg[ \frac{2 - 1}{2}\int\limits^a_b {cos^{2 - 2}(u)} \, du + \frac{cos^{2 - 1}(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  7. [Integral] Simplify:                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}\int\limits^a_b {} \, du + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  8. [Integral] Reverse Power Rule:                                                                     \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}(u) \bigg| \limits^a_b + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  9. Simplify:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3cos(u)sin(u)}{8} \bigg| \limits^a_b + \frac{3}{8}(u) \bigg| \limits^a_b
  10. Back-Substitute:                                                                                               \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(arcsin(x))sin(arcsin(x))}{4} \bigg| \limits^a_b + \frac{3cos(arcsin(x))sin(arcsin(x))}{8} \bigg| \limits^a_b + \frac{3}{8}(arcsin(x)) \bigg| \limits^a_b
  11. Simplify:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x)}{8} \bigg| \limits^a_b + \frac{x(1 - x^2)^\Big{\frac{3}{2}}}{4} \bigg| \limits^a_b + \frac{3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b
  12. Rewrite:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x) + 2x(1 - x^2)^\Big{\frac{3}{2}} + 3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b
  13. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:              \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
Read 2 more answers
What’s the correct answer for this?
charle [14.2K]

Answer:

YT AND RQ

Step-by-step explanation:

7 0
3 years ago
Find the surface area of the figure using the net shown. The area of the figure is yd2
geniusboy [140]

Answer:

Surface area = 233 yards²

Step-by-step explanation:

The surface area of the figure below is the sum of the area of each faces. This means the total surface area of the figure.

The figure has 4 triangle and 1 rectangle. The surface area will be the sum of area of the rectangle and the area of the 4 triangles.

surface  area = base area(rectangle) + 2(area of similar triangle) + 2(area of similar triangle)

Base area

area of the rectangle = length × breadth

area of the rectangle = 16 × 5 = 80 yards²

Area of the 2 similar triangle

area of triangle = 1/2 × base × height

area of triangle = 1/2 × 5 × 5

area of the triangle = 25/2 = 12.5

For the 2 similar triangle = 12.5 × 2 = 25 yard²

Area of the other 2 similar triangle

area of a triangle = 1/2 × base × height

area = 1/2 × 16 × 8 = 128/2 =  64 yards²

For the 2 similar triangle = 64 × 2 = 128 yards²

Surface area =  80 yards² + 25 yard²+ 128 yards² = 233 yards²

7 0
3 years ago
Other questions:
  • The formula d = rt means that the distance traveled is equal to the rate (speed) times the time. Solve d = rt for r
    10·2 answers
  • 3
    5·1 answer
  • How can polygons be considered a subcategory of two-dimensional figures? PLEASE HELP THIS IS DUE TOMORROW!!!!!!!!!
    14·1 answer
  • 4 ants are standing on a plane Ant A stands at (1,0) B at (0,1) C(-1,0) D at (0,-1) They all start walking to the next ant in al
    9·1 answer
  • John has 4 dimes and 8 quarters in a box. Find the probability of drawing a dime.
    8·1 answer
  • 8. What 3 dimensional shape has 4 triangles that are all the same size and a square?
    11·1 answer
  • a family of twenty purchased tickets to the country fair.tickets for adult cost $8 and tickets for children cost $4.if the total
    7·1 answer
  • What is the solution set of {x | x 5}?
    6·1 answer
  • Tanya and Cam can each wash a car and vacuum its interior in 2 hours. Pat needs 3 hours to do this same job by himself. If Pat,
    7·2 answers
  • Translate the following verbal phrase into a mathematical expression.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!