Answer:
Step-by-step explanation:
Theorm-The Fundamental Theorem of Algebra: If P(x) is a polynomial of degree n ≥ 1, then P(x) = 0 has exactly n roots, including multiple and complex roots.
Let's verify that the Fundamental Theorem of Algebra holds for quadratic polynomials.
A quadratic polynomial is a second degree polynomial. According to the Fundamental Theorem of Algebra, the quadratic set = 0 has exactly two roots.
As we have seen, factoring a quadratic equation will result in one of three possible situations.
graph 1
The quadratic may have 2 distinct real roots. This graph crosses the
x-axis in two locations. These graphs may open upward or downward.
graph 2
It may appear that the quadratic has only one real root. But, it actually has one repeated root. This graph is tangent to the x-axis in one location (touching once).
graph 3
The quadratic may have two non-real complex roots called a conjugate pair. This graph will not cross or touch the x-axis, but it will have two roots.