Answer:
add (12/2)^2 to both sides
Step-by-step explanation:
x^2-12x=16
x^2 -12x + (12/2)^2 = 16 + (12/2)^
x- (12/2)^2=52
(x-6)^2=52
Answers:
x= -2 root 3 +6
x= 2 root 3 +6
9 x² + 16 y² = 144 /:144

General formula of ellipse ( the center is at the origin ):
a² = 16, b² = 9
Domain: [-a, a ] = [-4, 4]
Range:[-b, b ]
Answer:
B ) ellipse.Domain: { -4 ≤ x ≤ 4 }Range: { -3 ≤ y ≤ 3 }
Separate the vectors into their <em>x</em>- and <em>y</em>-components. Let <em>u</em> be the vector on the right and <em>v</em> the vector on the left, so that
<em>u</em> = 4 cos(45°) <em>x</em> + 4 sin(45°) <em>y</em>
<em>v</em> = 2 cos(135°) <em>x</em> + 2 sin(135°) <em>y</em>
where <em>x</em> and <em>y</em> denote the unit vectors in the <em>x</em> and <em>y</em> directions.
Then the sum is
<em>u</em> + <em>v</em> = (4 cos(45°) + 2 cos(135°)) <em>x</em> + (4 sin(45°) + 2 sin(135°)) <em>y</em>
and its magnitude is
||<em>u</em> + <em>v</em>|| = √((4 cos(45°) + 2 cos(135°))² + (4 sin(45°) + 2 sin(135°))²)
… = √(16 cos²(45°) + 16 cos(45°) cos(135°) + 4 cos²(135°) + 16 sin²(45°) + 16 sin(45°) sin(135°) + 4 sin²(135°))
… = √(16 (cos²(45°) + sin²(45°)) + 16 (cos(45°) cos(135°) + sin(45°) sin(135°)) + 4 (cos²(135°) + sin²(135°)))
… = √(16 + 16 cos(135° - 45°) + 4)
… = √(20 + 16 cos(90°))
… = √20 = 2√5
Answer:
Step-by-step explanation:
N(17+x)=34x−r
17n+xn=34x-r
xn= 34x - r - 17n
xn-34x= -r - 17n
x(n-34)= -r - 17n
x= (-r - 17n)/(n-34)
Answer: (A) randomly selected elements within each of the strata form the sample.
Step-by-step explanation:
Stratified random sampling is a random sampling technique in statistics .
- It includes the partition of the entire population into sub-parts called strata.
- The strata are formed on the basis of the characteristics shared by members .
- After the formation of strata, researcher randomly selects participants from each strata to ensure that that the participant of every group must involve in the sample to represent each character.
Hence, the correct answer is :
(A) randomly selected elements within each of the strata form the sample.