The trigonometric function gives the ratio of different sides of a right-angle triangle. The given problems can be solved as given below.
<h3>What are Trigonometric functions?</h3>
The trigonometric function gives the ratio of different sides of a right-angle triangle.

where perpendicular is the side of the triangle which is opposite to the angle, and the hypotenuse is the longest side of the triangle which is opposite to the 90° angle.
1st.) x = 5 /Sin(30°)
x = 10
!) sin(45°) = 4/x
x = 4/sin(45°)
x = 4√2
I) Cos(45°) = √3 / x
x = √3 / Cos(45°)
x = √6
E) Tan(60°) = 3√3 / x
x = 3√3 / 3
W) For isosceles right-triangle, the angle made by the legs and the hypotenuse is always 45°.
x = 45°
N) x² + x² = (7√2)²
x = 7
V) Tan(60°) = 7 / x
x = 7√3/3
K) x² + x² = (9)²
x = 9/√2
Y) Sin(60°) = 7√3/x
x = 14
M) Sin(30°) = x/11
x = 11/2
T) Sin(45°) = x/√10
x = √5
A) x + 2x + 90° = 180°
x = 30°
O) Sin(45°) = √2 / x
x = 2
R) Tan(30°) = x / 4
x = 4/√3 = 4√3 / 3
S) Sin(60°) = x / (10/3)
x = 5√3 / 3
Learn more about Trigonometric functions:
brainly.com/question/6904750
#SPJ1
Marcus mowed 5 lawns
Explanation: 75 divided by 15 = 5
Answer:
Adding 12 to the circle area is equal to the square area.
Or
s2 = 12 + A
Where
s = side of square
A = area of circle
So
s2 = 12 + 36
s2 = 48
Solve this for s to get the side length