━━━━━━━☆☆━━━━━━━
▹ Answer
<em>-1 - 1/2x</em>
▹ Step-by-Step Explanation
3x ÷ x - 4 + x - 3 ÷ 2x
Divide and Rewrite:
3 * 1 - 4 + x - 3 ÷ 2 * x
Calculate:
3 - 4 + x - 3/2x
-1 + x - 3/2x
= -1 - 1/2x
Hope this helps!
CloutAnswers ❁
━━━━━━━☆☆━━━━━━━
Plug x = 0 into the function
f(x) = x^3 + 2x - 1
f(0) = 0^3 + 2(0) - 1
f(0) = -1
Note how the result is negative. The actual number itself doesn't matter. All we care about is the sign of the result.
Repeat for x = 1
f(x) = x^3 + 2x - 1
f(1) = 1^3 + 2(1) - 1
f(1) = 2
This result is positive.
---------------------------
We found that f(0) = -1 and f(1) = 2. The first output -1 is negative while the second output 2 is positive. Going from negative to positive means that, at some point, we will hit y = 0. We might have multiple instances of this happening, or just one. We don't know for sure. The only thing we do know is that there is at least one root in this interval.
To actually find this root, you'll need to use a graphing calculator because the root is some complicated decimal value. Using a graphing calculator, you should find the root to be approximately 0.4533976515
Answer:
3:4
Step-by-step explanation:
The original ratio between the red and green crayons would be 18:24, but you would need to simplify that to reach your definite simplified answer. Doing this, you find the least common factor between 18 and 24 which is 3 for 18 and 4 for 24.
Answer:
18
Step-by-step explanation:
<h3>
Answer: True</h3>
Explanation:
Technically you could isolate any variable you wanted, from either equation. However, convention is to pick the variable in which isolating it is easiest, and most efficient.
The key thing to look for is if there's a coefficient of 1. This is found in the second equation for the y term. Think of -4x+y = -13 as -4x+1y = -13. Due to the coefficient of 1, when solving for y we won't involve messy fractions.
If you were to solve for y, then you'd get y = 4x-13, which is then plugged in (aka substituted) into the first equation. That allows you to solve for x. Once you know x, you can determine y.