Answer:
The hourly decay rate is of 1.25%, so the hourly rate of change is of -1.25%.
The function to represent the mass of the sample after t days is 
Step-by-step explanation:
Exponential equation of decay:
The exponential equation for the amount of a substance is given by:

In which A(0) is the initial amount and r is the decay rate, as a decimal.
Hourly rate of change:
Decreases 26% by day. A day has 24 hours. This means that
; We use this to find r.



![\sqrt[24]{(1-r)^{24}} = \sqrt[24]{0.74}](https://tex.z-dn.net/?f=%5Csqrt%5B24%5D%7B%281-r%29%5E%7B24%7D%7D%20%3D%20%5Csqrt%5B24%5D%7B0.74%7D)



The hourly decay rate is of 1.25%, so the hourly rate of change is of -1.25%.
Starts out with 810 grams of Element X
This means that 
Element X is a radioactive isotope such that its mass decreases by 26% every day.
This means that we use, for this equation, r = 0.26.
The equation is:



The function to represent the mass of the sample after t days is 
Answer:
-45/2
Step-by-step explanation:
67 1/2 * (-1/3)
67 1/2 = 135/2
So 135/2*1/3=45/2
45/2*-1=-45/2
The anwser is C there you go
Answer is D. Add the equations in order to solve for the first variable. Plug this value into the other equations in order to solve for th remaining varables
Answer:
18 food booths initial costs are $(3,150 + 7d)
Step-by-step explanation: