Answer:
1) CO₂
2) 0.2551 g
Explanation:
The balanced reactions are:
CaCO₃ + 2HCl → CaCl₂ + H₂O + CO₂
MgCO₃ + 2HCl → MgCl₂ + H₂O + CO₂
1) The gas produced is CO₂.
2) Calculate mass of CaCO₃:
(0.5236 g) (0.4230) = 0.2215 g CaCO₃
Convert to moles:
(0.2215 g CaCO₃) (1 mol / 100.1 g) = 0.002213 mol CaCO₃
Find moles of CaCO₃:
(0.002213 mol CaCO₃) (1 mol CO₂ / mol CaCO₃) = 0.002213 mol CO₂
Convert to mass:
(0.002213 mol CO₂) (44.01 g / mol) = 0.09738 g CO₂
Calculate mass of MgCO₃:
(0.5236 g) (0.5770) = 0.3021 g MgCO₃
Convert to moles:
(0.3021 g MgCO₃) (1 mol / 84.31 g) = 0.003583 mol MgCO₃
Find moles of MgCO₃:
(0.003583 mol MgCO₃) (1 mol CO₂ / mol MgCO₃) = 0.003583 mol CO₂
Convert to mass:
(0.003583 mol CO₂) (44.01 g / mol) = 0.1577 g CO₂
Total mass of CO₂:
0.09738 g CO₂ + 0.1577 g CO₂ = 0.2551 g CO₂
<span>The control would be a plant grown without any fertilizer. This is called a negative control and is important in identifying the influence of the treatments on the tests. In this case, it would mean that the plant without fertilizer (control) is not expected to grow as large as in the other treatment. </span>
Carbohydrates, polymers, proteins, and nucleic acids.
These are, well, large organic molecules that are synthesized from multiple identical subunits, as questioned above.
Hope this helps!