The first 3 are examples of the difference of 2 squares so you use the identity
a^2 - b^2 = (a + b)(a - b)
x^2 - 49 = 0
so (x + 7)(x - 7) = 0
so either x + 7 = 0 or x - 7 = 0
giving x = -7 and 7.
Number 7 reduces to 3x^2 =12, x^2 = 4 so x = +/- 2
Number 8 take out GCf (d) to give
d(d - 2) = 0 so d = 0 , 2
9 and 10 are more difficult to factor
you use the 'ac' method Google it to get more details
2x^2 - 5x + 2
multiply first coefficient by the constant at the end
that is 2 * 2 = 4
Now we want 2 numbers which when multiplied give + 4 and when added give - 5:- -1 and -4 seem promising so we write the equation as:-
2x^2 - 4x - x + 2 = 0
now factor by grouping
2x(x - 2) - 1(x - 2) = 0
(x - 2) is common so
(2x - 1)(x - 2) = 0
and 2x - 1 = 0 or x - 2 = 0 and now you can find x.
The last example is solved in the same way.
Answer:
Simplifying
f(r) = 5 + 1.75r
Multiply f * r
fr = 5 + 1.75r
Solving
fr = 5 + 1.75r
Solving for variable 'f'.
Move all terms containing f to the left, all other terms to the right.
Divide each side by 'r'.
f = 5r-1 + 1.75
Simplifying
f = 5r-1 + 1.75
Reorder the terms:
f = 1.75 + 5r-1
Step-by-step explanation:
tada i think
Answer:
d=20
Step-by-step explanation:
To find the distance between 2 points we use the distance formula
d = √(x2 - x1)²+(y2 - y1)²
The given points are (x1= -8, y1 = -6) and (x2 = 4, y2 = 10).
Substitute the given points into the distance formula.
d = √(4 + 8)²+(10 +6)²
d = √144+252
d= √400
d = 20
Question 14, Part (i)
Focus on quadrilateral ABCD. The interior angles add to 360 (this is true for any quadrilateral), so,
A+B+C+D = 360
A+90+C+90 = 360
A+C+180 = 360
A+C = 360-180
A+C = 180
Since angles A and C add to 180, this shows they are supplementary. This is the same as saying angles 2 and 3 are supplementary.
==================================================
Question 14, Part (ii)
Let
x = measure of angle 1
y = measure of angle 2
z = measure of angle 3
Back in part (i) above, we showed that y + z = 180
Note that angles 1 and 2 are adjacent to form a straight line, so we can say
x+y = 180
-------
We have the two equations x+y = 180 and y+z = 180 to form this system of equations

Which is really the same as this system

The 0s help align the y terms up. Subtracting straight down leads to the equation x-z = 0 and we can solve to get x = z. Therefore showing that angle 1 and angle 3 are congruent. We could also use the substitution rule to end up with x = z as well.