Answer:
m<Q = 133°
Step-by-step explanation:
From the question given above, the following data were obtained:
m<P = (x + 13)°
m<Q = (10x + 13)°
m<R = (2x – 2)°
m<Q =?
Next, we shall determine the value of x. This can be obtained as follow:
m<P + m<Q + m<R = 180 (sum of angles in a triangle)
(x + 13)° + (10x + 13)° + (2x – 2)° = 180
x + 13 + 10x + 13 + 2x – 2 = 180
x + 10x + 2x + 13 + 13 – 2 = 180
13x + 24 = 180
Collect like terms
13x = 180 – 24
13x = 156
Divide both side by 13
x = 156 / 13
x = 12
Finally, we shall determine m<Q. This can be obtained as follow:
m<Q = (10x + 13)°
x = 12
m<Q = 10(12) + 13
m<Q = 120 + 13
m<Q = 133°
Answer:
the answer is 12
Step-by-step explanation:
Answer:1/3
Step-by-step explanation:
If Jen has 1 chocolate bar means that he has 3/3 whole .If he gives 2/3 then he will be left with 1/3 part of the chocolate bar.
What's the mean, median, and mode of 3, 5, 1, 5, 1, 1, 2, 3, 15.
lara [203]
<h3><em>
Answer:</em></h3>
<em>mean = 4</em>
<em>Median = 3</em>
<em>Mode = 1</em>
Step-by-step explanation:
first let’s arrange the numbers from least to highest:
1 , 1 , 1 , 2 , 3 , 3 , 5 , 5 , 15
=====================
The median is the number that’s comes in the middle of the data set ⇒ median = 3 ( the fifth number in the data set)
1 , 1 , 1 , 2 , <u>3</u>, 3 , 5 , 5 , 15
________________________
The mode is the number that repeats the most ⇒ mode = 1 (repeated 3 times)
____________________________________

first off, let's notice that Purple's time is in minutes, whilst the rate is in miles per hour, the units of both must correspond, so, we can either change the time from minutes to hours or the rate from hours to minutes, hmmm let's change the time to hours.
so 40 minutes, we know there are 60 minutes in 1 hour, so 40 minutes will be 40/60 of an hr, or namely 2/3.
![\qquad \qquad \textit{inverse proportional variation} \\\\ \textit{\underline{y} varies inversely with \underline{x}} ~\hspace{6em} \stackrel{\textit{constant of variation}}{y=\cfrac{\stackrel{\downarrow }{k}}{x}~\hfill } \\\\ \textit{\underline{x} varies inversely with }\underline{z^5} ~\hspace{5.5em} \stackrel{\textit{constant of variation}}{x=\cfrac{\stackrel{\downarrow }{k}}{z^5}~\hfill } \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cqquad%20%5Cqquad%20%5Ctextit%7Binverse%20proportional%20variation%7D%20%5C%5C%5C%5C%20%5Ctextit%7B%5Cunderline%7By%7D%20varies%20inversely%20with%20%5Cunderline%7Bx%7D%7D%20~%5Chspace%7B6em%7D%20%5Cstackrel%7B%5Ctextit%7Bconstant%20of%20variation%7D%7D%7By%3D%5Ccfrac%7B%5Cstackrel%7B%5Cdownarrow%20%7D%7Bk%7D%7D%7Bx%7D~%5Chfill%20%7D%20%5C%5C%5C%5C%20%5Ctextit%7B%5Cunderline%7Bx%7D%20varies%20inversely%20with%20%7D%5Cunderline%7Bz%5E5%7D%20~%5Chspace%7B5.5em%7D%20%5Cstackrel%7B%5Ctextit%7Bconstant%20of%20variation%7D%7D%7Bx%3D%5Ccfrac%7B%5Cstackrel%7B%5Cdownarrow%20%7D%7Bk%7D%7D%7Bz%5E5%7D~%5Chfill%20%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
