The first thing you should do when dealing with implicit derivatives is to respect the rules of derivation of both the logarithm and the exponential
Then, you must regroup the terms correctly until you get dy / dx
The answer for this case is D
I attach the solution
Answer:
81.85% of the workers spend between 50 and 110 commuting to work
Step-by-step explanation:
We can assume that the distribution is Normal (or approximately Normal) because we know that it is symmetric and mound-shaped.
We call X the time spend from one worker; X has distribution N(μ = 70, σ = 20). In order to make computations, we take W, the standarization of X, whose distribution is N(0,1)

The values of the cummulative distribution function of the standard normal, which we denote
, are tabulated. You can find those values in the attached file.

Using the symmetry of the Normal density function, we have that
. Hece,

The probability for a worker to spend that time commuting is 0.8185. We conclude that 81.85% of the workers spend between 50 and 110 commuting to work.
The (-3,4) because it isn’t following the line it’s in between he two lines and the other answers are on the line.