The best way to do this is to draw a picture of ΔFKL and include line segment KM that is perpendicular to FL. This creates ΔFKM which is a 45°-45°-90° triangle and ΔLKM which is a 30°-60°-90° triangle.
Find the lengths of FM and ML. Then, FM + ML = FL
<u>FM</u>
ΔFKM (45°-45°-90°): FK is the hypotenuse so FM =
<u>ML</u>
ΔLKM (30°-60°-90°): from ΔFKM, we know that KM = , so KL =