Answer:
I think it is C
Step-by-step explanation:
Reason being because the question said at least 15 points more so it can't
be 12 equal to 12 points. so you could eliminate the greater than or equal to.
so that leaves c and d. can't see how it is D because if he has 15 points more can't see why his other portion of points could take away 15 so that leaves C.
hope that helps
f(x) is a linear function with no restrictions
Domain: x = All real numbers
Range: y = All real numbers
The answer is the first one
<span>2.5(−4.4 − 3.5)
=</span>−4.4 − 3.5=-7.9
=2.5(-7.9)
=-19.75
If you're using the app, try seeing this answer through your browser: brainly.com/question/2308127_______________
Write the expression below in terms of x and y only:
(I'm going to call it "E")
![\mathsf{E=sin\!\left[sin^{-1}(x)+cos^{-1}(y)\right]\qquad\quad(i)}](https://tex.z-dn.net/?f=%5Cmathsf%7BE%3Dsin%5C%21%5Cleft%5Bsin%5E%7B-1%7D%28x%29%2Bcos%5E%7B-1%7D%28y%29%5Cright%5D%5Cqquad%5Cquad%28i%29%7D)
Let

so the expression becomes

• Finding

![\mathsf{sin\,\alpha=sin\!\left[sin^{-1}(x)\right]}\\\\ \mathsf{sin\,\alpha=x\qquad\quad\checkmark}](https://tex.z-dn.net/?f=%5Cmathsf%7Bsin%5C%2C%5Calpha%3Dsin%5C%21%5Cleft%5Bsin%5E%7B-1%7D%28x%29%5Cright%5D%7D%5C%5C%5C%5C%20%5Cmathsf%7Bsin%5C%2C%5Calpha%3Dx%5Cqquad%5Cquad%5Ccheckmark%7D)
• Finding


because

is positive for
![\mathsf{\alpha\in \left[-\frac{\pi}{2},\,\frac{\pi}{2}\right].}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Calpha%5Cin%20%5Cleft%5B-%5Cfrac%7B%5Cpi%7D%7B2%7D%2C%5C%2C%5Cfrac%7B%5Cpi%7D%7B2%7D%5Cright%5D.%7D)
• Finding

![\mathsf{cos\,\beta=cos\!\left[cos^{-1}(y)\right]}\\\\ \mathsf{cos\,\beta=y\qquad\quad\checkmark}](https://tex.z-dn.net/?f=%5Cmathsf%7Bcos%5C%2C%5Cbeta%3Dcos%5C%21%5Cleft%5Bcos%5E%7B-1%7D%28y%29%5Cright%5D%7D%5C%5C%5C%5C%20%5Cmathsf%7Bcos%5C%2C%5Cbeta%3Dy%5Cqquad%5Cquad%5Ccheckmark%7D)
• Finding


because

is positive for
![\mathsf{\beta\in [0,\,\pi].}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cbeta%5Cin%20%5B0%2C%5C%2C%5Cpi%5D.%7D)
Finally, you get
![\mathsf{E=x\cdot y +\sqrt{1-y^2}\cdot \sqrt{1-x^2}}\\\\\\ \therefore~~\mathsf{sin\!\left[sin^{-1}(x)+cos^{-1}(y)\right]=x\cdot y +\sqrt{1-y^2}\cdot \sqrt{1-x^2}\qquad\quad\checkmark}](https://tex.z-dn.net/?f=%5Cmathsf%7BE%3Dx%5Ccdot%20y%20%2B%5Csqrt%7B1-y%5E2%7D%5Ccdot%20%5Csqrt%7B1-x%5E2%7D%7D%5C%5C%5C%5C%5C%5C%20%5Ctherefore~~%5Cmathsf%7Bsin%5C%21%5Cleft%5Bsin%5E%7B-1%7D%28x%29%2Bcos%5E%7B-1%7D%28y%29%5Cright%5D%3Dx%5Ccdot%20y%20%2B%5Csqrt%7B1-y%5E2%7D%5Ccdot%20%5Csqrt%7B1-x%5E2%7D%5Cqquad%5Cquad%5Ccheckmark%7D)
I hope this helps. =)
Tags: <em>inverse trigonometric trig function sine cosine sin cos arcsin arccos sum angles trigonometry</em>