Answer:
See explanations below
Step-by-step explanation:
Given the functions f(x)=2x+3 and g(x)=x^2-1
a. Find f(g(x))
f(g(x)) = f(x^2-1)
f(g(x)) = 2(x^2-1)+3
f(g(x))= 2x^2-2+3
f(g(x)) = 2x^2+1
Hence the composite function f(g(x)) is 2x^2+1
b) g(f(x)) = g(2x+3)
g(f(x) = (2x+3)^2-1
g(f(x)) = 4x^2+12x+9-1
g(f(x)) = 4x^2+12x+8
Answer:
Number of Significant Figures: 4
The Significant Figures are 1 0 7 6
For a rectangle, A = LW.
A = (3x + 2)(x - 4)
A = 3x^2 - 12x + 2x - 8
A = 3x^2 -10x - 8
T=(60cos78, 60sin78)
T=(12.47, 58.69)
C=45
d=√((45-12.47)^2+58.69^2)
d≈67.1km