1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ExtremeBDS [4]
3 years ago
5

PLEASE HELP IM IN A HURRY

Mathematics
1 answer:
Liula [17]3 years ago
7 0

Answer:

The area of the figure composed of a parallelogram, a square and a rectangle is 126 in².

Step-by-step explanation:

Hope I could help!

You might be interested in
Some types of algae have the potential to cause damage to river ecosystems. Suppose the accompanying data on algae colony densit
Phantasy [73]

Answer:

y=-2.95836 x +234.56159

Step-by-step explanation:

We assume that th data is this one:

x: 50, 55, 50, 79, 44, 37, 70, 45, 49

y: 152, 48, 22, 35, 43, 171, 13, 185, 25

a) Compute the equation of the least-squares regression line. (Round your numerical values to five decimal places.)For this case we need to calculate the slope with the following formula:

m=\frac{S_{xy}}{S_{xx}}

Where:

S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n}

S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}

So we can find the sums like this:

\sum_{i=1}^n x_i =50+ 55+ 50+ 79+ 44+ 37+ 70+ 45+ 49=479

\sum_{i=1}^n y_i =152+ 48+ 22+ 35+ 43+ 171+ 13+ 185+ 25=694

\sum_{i=1}^n x^2_i =50^2 + 55^2 + 50^2 + 79^2 + 44^2 + 37^2 + 70^2 + 45^2 + 49^2=26897

\sum_{i=1}^n y^2_i =152^2 + 48^2 + 22^2 + 35^2 + 43^2 + 171^2 + 13^2 + 185^2 + 25^2=93226

\sum_{i=1}^n x_i y_i =50*152+ 55*48+ 50*22+ 79*35+ 44*43+ 37*171+ 70*13+ 45*185+ 49*25=32784

With these we can find the sums:

S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}=26897-\frac{479^2}{9}=1403.556

S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}=32784-\frac{479*694}{9}=-4152.22

And the slope would be:

m=-\frac{-4152.222}{1403.556}=-2.95836

Nowe we can find the means for x and y like this:

\bar x= \frac{\sum x_i}{n}=\frac{479}{9}=53.222

\bar y= \frac{\sum y_i}{n}=\frac{694}{9}=77.111

And we can find the intercept using this:

b=\bar y -m \bar x=77.1111111-(-2.95836*53.22222222)=234.56159

So the line would be given by:

y=-2.95836 x +234.56159

7 0
2 years ago
To better understand how husbands and wives feel about their finances, Money Magazine conducted a national poll of 1010 married
Xelga [282]

Answer:

  • a. See the table below
  • b. See the table below
  • c. 0.548
  • d. 0.576
  • e. 0.534
  • f) i) 0.201, ii) 0.208

Explanation:

First, order the information provided:

Table: "Who is better at getting deals?"

                                       Who Is Better?

Respondent      I Am        My Spouse     We Are Equal

Husband           278             127                     102

Wife                   290            111                       102

<u>a. Develop a joint probability table and use it to answer the following questions. </u>

The<em> joint probability table</em> shows the same information but as proportions. Hence, you must divide each number of the table by the total number of people in the set of responses.

1. Number of responses: 278 + 127 + 102 + 290 + 111 + 102 = 1,010.

2. Calculate each proportion:

  • 278/1,010 = 0.275
  • 127/1,010 = 0.126
  • 102/1,010 = 0.101
  • 290/1,010 = 0.287
  • 111/1,010 = 0.110
  • 102/1,010 = 0.101

3. Construct the table with those numbers:

<em>Joint probability table</em>:

Respondent      I Am        My Spouse     We Are Equal

Husband           0.275           0.126                 0.101

Wife                   0.287           0.110                  0.101

Look what that table means: it tells that the joint probability of being a husband and responding "I am" is 0.275. And so for every cell: every cell shows the joint probability of a particular gender with a particular response.

Hence, that is why that is the joint probability table.

<u>b. Construct the marginal probabilities for Who Is Better (I Am, My Spouse, We Are Equal). Comment.</u>

The marginal probabilities are calculated for each for each row and each column of the table. They are shown at the margins, that is why they are called marginal probabilities.

For the colum "I am" it is: 0.275 + 0.287 = 0.562

Do the same for the other two colums.

For the row "Husband" it is 0.275 + 0.126 + 0.101 = 0.502. Do the same for the row "Wife".

Table<em> Marginal probabilities</em>:

Respondent      I Am        My Spouse     We Are Equal     Total

Husband           0.275           0.126                 0.101             0.502

Wife                   0.287           0.110                  0.101             0.498

Total                 0.562           0.236                0.202             1.000

Note that when you add the marginal probabilities of the each total, either for the colums or for the rows, you get 1. Which is always true for the marginal probabilities.

<u>c. Given that the respondent is a husband, what is the probability that he feels he is better at getting deals than his wife? </u>

For this you use conditional probability.

You want to determine the probability of the response be " I am" given that the respondent is a "Husband".

Using conditional probability:

  • P ( "I am" / "Husband") = P ("I am" ∩ "Husband) / P("Husband")

  • P ("I am" ∩ "Husband) = 0.275 (from the intersection of the column "I am" and the row "Husband)

  • P("Husband") = 0.502 (from the total of the row "Husband")

  • P ("I am" ∩ "Husband) / P("Husband") = 0.275 / 0.502 = 0.548

<u>d. Given that the respondent is a wife, what is the probability that she feels she is better at getting deals than her husband?</u>

You want to determine the probability of the response being "I am" given that the respondent is a "Wife", for which you use again the formula for conditional probability:

  • P ("I am" / "Wife") = P ("I am" ∩ "Wife") / P ("Wife")

  • P ("I am" / "Wife") = 0.287 / 0.498

  • P ("I am" / "Wife") = 0.576

<u>e. Given a response "My spouse," is better at getting deals, what is the probability that the response came from a husband?</u>

You want to determine: P ("Husband" / "My spouse")

Using the formula of conditional probability:

  • P("Husband" / "My spouse") = P("Husband" ∩ "My spouse")/P("My spouse")

  • P("Husband" / "My spouse") = 0.126/0.236

  • P("Husband" / "My spouse") = 0.534

<u>f. Given a response "We are equal" what is the probability that the response came from a husband? What is the probability that the response came from a wife?</u>

<u>What is the probability that the response came from a husband?</u>

  • P("Husband" / "We are equal") = P("Husband" ∩ "We are equal" / P ("We are equal")

  • P("Husband" / "We are equal") = 0.101 / 0.502 = 0.201

<u>What is the probability that the response came from a wife:</u>

  • P("Wife") / "We are equal") = P("Wife" ∩ "We are equal") / P("We are equal")

  • P("Wife") / "We are equal") = 0.101 / 0.498 = 0.208
6 0
3 years ago
$350, 6.2%, 3 years plzz help
KIM [24]

Answer:

not much info

Step-by-step explanation:

8 0
3 years ago
List 3 goods or services you have used that are funded by taxes
Tanzania [10]
Education school,Our military defense and Law enforcement like the Police.
5 0
3 years ago
Read 2 more answers
Solve the integral:<br><img src="https://tex.z-dn.net/?f=%20%5Cint%20%5C%3A%20%20%7Be%7D%5E%7B%20-%20%20%7Bx%7D%5E%7B2%7D%20%7D%
Sever21 [200]

e^{-x^2} has no antiderivative in terms of elementary functions (polynomials, exponentials, logarithms, trigonometric functions, etc), but there is a special function defined to fit that role called the error function, \mathrm{erf}(x), where

\mathrm{erf}(x)=\displaystyle\frac2{\sqrt\pi}\int_0^xe^{-t^2}\,\mathrm dt

By the fundamental theorem of calculus, we can see that

\dfrac{\mathrm d}{\mathrm dx}\mathrm{erf}(x)=\dfrac2{\sqrt\pi}e^{-x^2}

which means we have

\displaystyle\int e^{-x^2}\,\mathrm dx=\dfrac{\sqrt\pi}2\mathrm{erf}(x)+C

8 0
3 years ago
Other questions:
  • Reza and James have started exercising together. When they started, Reza weighed 185 pounds and James weighed 180. After 10 week
    15·1 answer
  • NEED HELP NOW 71 POINTS WILL MARK BRAINLIEST ANSWER!!!!!!
    12·2 answers
  • in the diagram ,a and 46° are complementary angles. It is given that a and b are supplementary angles and the angle conjugate to
    14·1 answer
  • HELP PLEASE ILL GIVE BRAINLIEST!
    14·1 answer
  • What is the length of leg s of the triangle below?
    8·1 answer
  • Use trigonometry to find the value of x. Round your answer to the nearest whole degree
    7·1 answer
  • Solve the problem 7 divided by $6.93
    11·2 answers
  • Can someone please answer my question Geometric Sequence:<br> 3, 6, 12, 24, …
    11·2 answers
  • The new pool cover is 35 feet long and 13 feet wide with the overhang.
    15·1 answer
  • 155.5-5.5∙20.7 help me with this
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!