Answer:
Step-by-step explanation:
![x^{2} \sqrt{x} \sqrt[n]{x} \frac{x}{y} x_{123} \beta \beta \alpha \neq \geq \\ \left \{ {{y=2} \atop {x=2}} \right.](https://tex.z-dn.net/?f=x%5E%7B2%7D%20%5Csqrt%7Bx%7D%20%5Csqrt%5Bn%5D%7Bx%7D%20%5Cfrac%7Bx%7D%7By%7D%20x_%7B123%7D%20%5Cbeta%20%5Cbeta%20%5Calpha%20%5Cneq%20%5Cgeq%20%5C%5C%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D%20%5Cright.)
Answer:
2
Step-by-step explanation
8 times y <21. Well, what times 8 gives us less than 21. y is less than or equal to 2.
Answer:
Yes
Step-by-step explanation:
1. Area of a circle is pi(R)^2 , where R is the radius. So we can substitute:
22/7(16^2) = about 805 meters squared.
2. Let's find the area of the rectangle first.
A=LW
A= 18(10)
A= 180 cm squared.
Now the semi-Circle:
The radius of the circle is 9 (because 18/2 is 9). Now we plug in to the area formula:
22/7(9^2) = about 254 cm squared. But because that is the area of the whole circle, and we only need half of the circle, we divide that value by 2 to get:
127 cm squared for the semi-circle.
Now we add up the rectangle and semi-circle's areas:
180 + 127 = 307 cm squared as your answer.
I hope this Helps!