Answer:
x = -44/13
y = -65/13
Step-by-step explanation:
Using matrix form means using the crammers rule
The matrix form of the expression is written as;
![\left[\begin{array}{ccc}8&5\\-1&1\\\end{array}\right] \left[\begin{array}{ccc}x\\y\\\end{array}\right] = \left[\begin{array}{ccc}9\\7\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D8%265%5C%5C-1%261%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D9%5C%5C7%5C%5C%5Cend%7Barray%7D%5Cright%5D)
AX = B
taking the determinant of A;
|A| = 8(1) - 5(-1)
|A| = 8 + 5
|A| = 13
After replacing the first row with the column matrix;
![A_x =\left[\begin{array}{ccc}9&5\\7&-1\\\end{array}\right]](https://tex.z-dn.net/?f=A_x%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D9%265%5C%5C7%26-1%5C%5C%5Cend%7Barray%7D%5Cright%5D)
|Ax| = 9(-1)-5(7)
||Ax| = -9 - 35
|Ax| = -44
x = |Ax|/|A|
x = -44/13
similarly for y
![A_x =\left[\begin{array}{ccc}8&9\\-1&7\\\end{array}\right]](https://tex.z-dn.net/?f=A_x%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D8%269%5C%5C-1%267%5C%5C%5Cend%7Barray%7D%5Cright%5D)
|Ay| = 8(7)+9
|Ay| = 56+9
|Ay| = 65
y = |Ay|/|A|
y = -65/13
- 4(1/2)x - (3/7) = (1/4)
- 4(1/2)x = (1/4) + (3/7)
- (9/2)x = (7+12)/28
-(9/2)x = 19/28
x = (19/28) * 2 / 9
x = (19/14) / 9
x = 19 / (14*9)
x = 19 / 126
Answer:
L - W = 2 and 2L + 2W = 68
Step-by-step explanation:
The two equations here are going to be-
Length minus width equals 2
L - W = 2
And
Length x 2 + Width x 2 = 68
2L + 2W = 68