The pressure exerted by a fluid solely relies on the depth or height of the fluid, its density, and the gravitational constant. These three are related in the equation:
Pressure = density x g x height
In the problem, point A is within the block inside the tank. The water above the block is assumed to be 0.6 meters. This gives a point A pressure of:
P = 1000 kg/m^3 * 9.81 m/s^2 * 0.6 m = 5,886 Pa or 5.88KPa
What are the following statements? If there's one that mention a description of current action, or motion, that's your answer.
Answer: 7.78m/s
Explanation: As the the skier slide down the height, we assume the motion of a body, slidind down an incline plane.
Force down the plane= [email protected]
Frictional force= umg
u= coefficient of friction
Net force on skier = [email protected] umg
ma = [email protected]
a = g([email protected] - u) = 9.8 (sin 25- 0.2)
a = 9.8 × (0.4226-0.2) = 9.8 × 0.2226
a = 2.18m/s²
Using the formula V² = U² + 2aH
Where H = (10.4+ 3.5)=total height of descent before landing, U= 0.
V = √ 2 × 2.18× 13.9 = √60.604
V = 7.78m/s
Answer:
I think so is b kinetic o a potential