The formula used to find the area<span> of a circlular </span>sector<span> - a pie-shaped </span>part of a circle<span>. ... </span>π<span>. 4. 2. ·. 86. 360. = 12.01. What the formulae are doing is taking the </span>area<span> of the whole ... So for example, if the</span>central angle<span> was 90°, then </span>the sector<span> would </span>have<span> an </span>area<span> equal to one ... r is the </span>radius<span> of the </span>circle<span>of which </span>the sector<span> is </span>part<span>.</span>
Answer:
Multiply 1014 by 6.444 and you should get
Step-by-step explanation:
6534. 216 x
Answer:
a-ii
b-iii
c-v
d-i
e-vi
please mark as brainliest
One revolution is completed when a fixed point on the wheel travels a distance equal to the circumference of the wheel, which is 2π (13 cm) = 26π cm.
So we have
1 rev = 26π cm
1 rev = 2π rad
1 min = 60 s
(a) The angular velocity of the wheel is
(35 rev/min) * (2π rad/rev) * (1/60 min/s) = 7π/6 rad/s
or approximately 3.665 rad/s.
(b) The linear velocity is
(35 rev/min) * (26π cm/rev) * (1/60 min/s) = 91π/6 cm/s
or roughly 47.648 cm/s.
0 is the answer! that is because 62 is also the mean.