The Bernoulli distribution is a distribution whose random variable can only take 0 or 1
- The value of E(x2) is p
- The value of V(x) is p(1 - p)
- The value of E(x79) is p
<h3>How to compute E(x2)</h3>
The distribution is given as:
p(0) = 1 - p
p(1) = p
The expected value of x2, E(x2) is calculated as:

So, we have:

Evaluate the exponents

Multiply

Add

Hence, the value of E(x2) is p
<h3>How to compute V(x)</h3>
This is calculated as:

Start by calculating E(x) using:

So, we have:


Recall that:

So, we have:

Factor out p

Hence, the value of V(x) is p(1 - p)
<h3>How to compute E(x79)</h3>
The expected value of x79, E(x79) is calculated as:

So, we have:

Evaluate the exponents

Multiply

Add

Hence, the value of E(x79) is p
Read more about probability distribution at:
brainly.com/question/15246027
Answer:
25
Step-by-step explanation:
4x = 100
x = 100/4
x = 25
You can solve this by using "similar triangles".
In triangle ABC, we are looking for side AC which is x. Side AC is similar to side DF in triangle EDF.
You can solve for side x by picking two sides in triangle ABC and their corresponding sides in triangle EDF. This is what I mean:

Substitute for the values of AC, BC, DF and EF:


To solve for y, do the same thing. Pick two sides on triangle ABC and their corresponding sides in triangle DEF.

Substitute for the values and solve:


We have the value x to be 5.5 units and y to be 6 units.
Answer:
2
Step-by-step explanation:
6-x/2=4
6-x=4*2
6-x=8
x=2