The answer is
the volume of the prism is 648\ cm^{3}
Answer:
the 2nd one (60m minutes)
Step-by-step explanation:
60 minutes in an hour, so if m is the number of hours you would times that by the number of minutes in an hour which is sixty. 60m is 60 times m
11ce^3 nt^2 imrs, 8ce^3 nt^2 imrs, 3ce^3 nt^2 imrs, 0.2, 3ce^3 nt^2 imr, ce^3 nt^2 imrs
30 + (40 × 3) = 150
60 + (30 × 3) = 150
in three months the total cost would he the same.
Rewrite the limand as
(1 - sin(<em>x</em>)) / cot²(<em>x</em>) = (1 - sin(<em>x</em>)) / (cos²(<em>x</em>) / sin²(<em>x</em>))
… = ((1 - sin(<em>x</em>)) sin²(<em>x</em>)) / cos²(<em>x</em>)
Recall the Pythagorean identity,
sin²(<em>x</em>) + cos²(<em>x</em>) = 1
Then
(1 - sin(<em>x</em>)) / cot²(<em>x</em>) = ((1 - sin(<em>x</em>)) sin²(<em>x</em>)) / (1 - sin²(<em>x</em>))
Factorize the denominator; it's a difference of squares, so
1 - sin²(<em>x</em>) = (1 - sin(<em>x</em>)) (1 + sin(<em>x</em>))
Cancel the common factor of 1 - sin(<em>x</em>) in the numerator and denominator:
(1 - sin(<em>x</em>)) / cot²(<em>x</em>) = sin²(<em>x</em>) / (1 + sin(<em>x</em>))
Now the limand is continuous at <em>x</em> = <em>π</em>/2, so
