We will use the formula for the slope:
m = ( y2- y1 ) / ( x2 - x1 )
For PQ : m = ( 0 - 0 ) / ( a + c - 0 ) = 0
For RS : m = ( b - b ) / ( a - ( 2a + c )) = 0
Both slopes are m = 0, so PQ and RS are parallel to x - axis and at the same time parallel to each other ( PQ | | RS ). One pair of opposite sides is parallel.
Answer:(1,1)
Step-by-step explanation:
Its asking where both linear and curve lines are being hit,
(fxg)(0)= 1,1
Answer:
The pairs are (13,15) and (-15,-13).
Step-by-step explanation:
If n is an odd integer, the very next odd integer will be n+2.
n+1 is even (so we aren't using this number)
The sum of the squares of (n) and (n+2) is 394.
This means
(n)^2+(n+2)^2=394
n^2+(n+2)(n+2)=394
n^2+n^2+4n+4=394 since (a+b)(a+b)=a^2+2ab+b^2
Combine like terms:
2n^2+4n+4=394
Subtract 394 on both sides:
2n^2+4n-390=0
Divide both sides by 2:
n^2+2n-195=0
Now we need to find two numbers that multiply to be -195 and add up to be 2.
15 and -13 since 15(-13)=-195 and 15+(-13)=2
So the factored form is
(n+15)(n-13)=0
This means we have n+15=0 and n-13=0 to solve.
n+15=0
Subtract 15 on both sides:
n=-15
n-13=0
Add 13 on both sides:
n=13
So if n=13 , then n+2=15.
If n=-15, then n+2=-13.
Let's check both results
(n,n+2)=(13,15)
13^2+15^2=169+225=394. So (13,15) looks good!
(n,n+2)=(-15,-13)
(-15)^2+(-13)^2=225+169=394. So (-15,-13) looks good!
We want to see how long will take a healthy adult to reduce the caffeine in his body to a 60%. We will find that the answer is 3.55 hours.
We know that the half-life of caffeine is 4.8 hours, this means that for a given initial quantity of coffee A, after 4.8 hours that quantity reduces to A/2.
So we can define the proportion of coffee that Jeremiah has in his body as:
P(t) = 1*e^{k*t}
Such that:
P(4.8 h) = 0.5 = 1*e^{k*4.8}
Then, if we apply the natural logarithm we get:
Ln(0.5) = Ln(e^{k*4.8})
Ln(0.5) = k*4.8
Ln(0.5)/4.8 = k = -0.144
Then the equation is:
P(t) = 1*e^{-0.144*t}
Now we want to find the time such that the caffeine in his body is the 60% of what he drank that morning, then we must solve:
P(t) = 0.6 = 1*e^{-0.144*t}
Again, we use the natural logarithm:
Ln(0.6) = Ln(e^{-0.144*t})
Ln(0.6) = -0.144*t
Ln(0.6)/-0.144 = t = 3.55
So after 3.55 hours only the 60% of the coffee that he drank that morning will still be in his body.
If you want to learn more, you can read:
brainly.com/question/19599469
Answer:
77% to the nearest whole number
Step-by-step explanation:
This is 60187 / 78250
= 0.7691
= 77%