1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Genrish500 [490]
4 years ago
11

I need help on this

Mathematics
2 answers:
noname [10]4 years ago
8 0

Check  the picture below.

make sure your calculator is in Degree mode.

saul85 [17]4 years ago
5 0

Answer:

Step-by-step explanation:

Triangle ABC is a right angle triangle.

From the given right angle triangle,

AB represents the hypotenuse of the right angle triangle.

With m∠B as the reference angle,

BC represents the adjacent side of the right angle triangle.

AC represents the opposite side of the right angle triangle.

To determine AC, we would apply

the tangent trigonometric ratio.

Tan θ = opposite side/adjacent side. Therefore,

Tan 25 = AC/5

AC = 5tan25 = 5 × 0.4663

AC = 2.33 to the nearest hundredth.

You might be interested in
the number of people with one type of flu doubles every day for several days what type of function represents this pattern
svet-max [94.6K]

Answer:

The answer will be Exponential growth.

<em>Please mark me as the brainliest.</em>

8 0
2 years ago
Read 2 more answers
Find the vertices and foci of the hyperbola. 9x2 − y2 − 36x − 4y + 23 = 0
Xelga [282]
Hey there, hope I can help!

NOTE: Look at the image/images for useful tips
\left(h+c,\:k\right),\:\left(h-c,\:k\right)

\frac{\left(x-h\right)^2}{a^2}-\frac{\left(y-k\right)^2}{b^2}=1\:\mathrm{\:is\:the\:standard\:equation\:for\:a\:right-left\:facing:H}
with the center of (h, k), semi-axis a and semi-conjugate - axis b.
NOTE: H = hyperbola

9x^2-y^2-36x-4y+23=0 \ \textgreater \  \mathrm{Subtract\:}23\mathrm{\:from\:both\:sides}
9x^2-36x-4y-y^2=-23

\mathrm{Factor\:out\:coefficient\:of\:square\:terms}
9\left(x^2-4x\right)-\left(y^2+4y\right)=-23

\mathrm{Divide\:by\:coefficient\:of\:square\:terms:\:}9
\left(x^2-4x\right)-\frac{1}{9}\left(y^2+4y\right)=-\frac{23}{9}

\mathrm{Divide\:by\:coefficient\:of\:square\:terms:\:}1
\frac{1}{1}\left(x^2-4x\right)-\frac{1}{9}\left(y^2+4y\right)=-\frac{23}{9}

\mathrm{Convert}\:x\:\mathrm{to\:square\:form}
\frac{1}{1}\left(x^2-4x+4\right)-\frac{1}{9}\left(y^2+4y\right)=-\frac{23}{9}+\frac{1}{1}\left(4\right)

\mathrm{Convert\:to\:square\:form}
\frac{1}{1}\left(x-2\right)^2-\frac{1}{9}\left(y^2+4y\right)=-\frac{23}{9}+\frac{1}{1}\left(4\right)

\mathrm{Convert}\:y\:\mathrm{to\:square\:form}
\frac{1}{1}\left(x-2\right)^2-\frac{1}{9}\left(y^2+4y+4\right)=-\frac{23}{9}+\frac{1}{1}\left(4\right)-\frac{1}{9}\left(4\right)

\mathrm{Convert\:to\:square\:form}
\frac{1}{1}\left(x-2\right)^2-\frac{1}{9}\left(y+2\right)^2=-\frac{23}{9}+\frac{1}{1}\left(4\right)-\frac{1}{9}\left(4\right)

\mathrm{Refine\:}-\frac{23}{9}+\frac{1}{1}\left(4\right)-\frac{1}{9}\left(4\right) \ \textgreater \  \frac{1}{1}\left(x-2\right)^2-\frac{1}{9}\left(y+2\right)^2=1 \ \textgreater \  Refine
\frac{\left(x-2\right)^2}{1}-\frac{\left(y+2\right)^2}{9}=1

Now rewrite in hyperbola standardform
\frac{\left(x-2\right)^2}{1^2}-\frac{\left(y-\left(-2\right)\right)^2}{3^2}=1

\mathrm{Therefore\:Hyperbola\:properties\:are:}\left(h,\:k\right)=\left(2,\:-2\right),\:a=1,\:b=3
\left(2+c,\:-2\right),\:\left(2-c,\:-2\right)

Now we must compute c
\sqrt{1^2+3^2} \ \textgreater \  \mathrm{Apply\:rule}\:1^a=1 \ \textgreater \  1^2 = 1 \ \textgreater \  \sqrt{1+3^2}

3^2 = 9 \ \textgreater \  \sqrt{1+9} \ \textgreater \  \sqrt{10}

Therefore the hyperbola foci is at \left(2+\sqrt{10},\:-2\right),\:\left(2-\sqrt{10},\:-2\right)

For the vertices we have \left(2+1,\:-2\right),\:\left(2-1,\:-2\right)

Simply refine it
\left(3,\:-2\right),\:\left(1,\:-2\right)
Therefore the listed coordinates above are our vertices

Hope this helps!

8 0
4 years ago
Can someone please help me with this question!!!
Elena-2011 [213]

Answer:

32

Step-by-step explanation:

x+102=4x+6

102=3x+6

96=3x

32=x

Hope this helps!!!

5 0
3 years ago
Which equation is true when m = 4?
Luba_88 [7]
The correct answer is A and B because if you replace the m's with 4 than you do get the answer at the end of the equation.  Hope this helps.
4 0
3 years ago
In AQRS OR=7, RS=11 M&lt;=42 IN AUVT VT=26, TU= 44 M
N76 [4]
I think the answer to In AQRS OR=7, RS=11 M<=42 IN AUVT VT=26, TU= 44 M is THE TRIANGLES ARE NOT SIMILAR.
6 0
3 years ago
Other questions:
  • Find two square numbers which a<br> Have the sum of 130
    11·1 answer
  • Can someone help me solve this before I quit math
    9·2 answers
  • A dog and a cat are 200 meters apart when they see each other. The dog can run at a speed of 30 m/sec, while the cat can run at
    8·2 answers
  • Lester worked 12 hours last week at the grocery store and earned $93.00. If
    12·1 answer
  • Which of these points lies on the line described by the equation below y-3=5(x-9)
    12·2 answers
  • What will be the distance from point c' in the rotated figure?
    11·2 answers
  • Simplify the espression Math Help!!!!
    6·2 answers
  • What is the solution to this inequality <br> 2(x - 4 ) &lt; 5x + 4
    8·1 answer
  • How do you solve (4c-10)◙
    14·1 answer
  • I don't understand how to make the equation on number 6 PLZ help
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!