1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Minchanka [31]
3 years ago
9

7B%5Cfrac%7B5%7D%7B2%7D%20%7D%29%20%282k%5E%7B%5Cfrac%7B3%7D%7B4%7D%20%7D%29" id="TexFormula1" title="(3h^{\frac{5}{2} })( 2k^{\frac{3}{4} })(3h^{\frac{5}{2} }) (2k^{\frac{3}{4} })" alt="(3h^{\frac{5}{2} })( 2k^{\frac{3}{4} })(3h^{\frac{5}{2} }) (2k^{\frac{3}{4} })" align="absmiddle" class="latex-formula">
Please Show Your Work
Mathematics
1 answer:
Fofino [41]3 years ago
7 0

Answer:

486h^{5}k\sqrt{2k}

Step-by-step explanation:

We have to simplify the expression (3h^{\frac{5}{2}})(2k^{\frac{3}{4}})(3h^{\frac{5}{2}})(2k^{\frac{3}{4}})

Now,

(3h^{\frac{5}{2}})(2k^{\frac{3}{4}})(3h^{\frac{5}{2}})(2k^{\frac{3}{4}})

= (3^{\frac{5}{2}}\times 3^{\frac{5}{2}})\times (2^{\frac{3}{4}} \times 2^{\frac{3}{4}}) \times (h^{\frac{5}{2}}\times h^{\frac{5}{2}})\times (k^{\frac{3}{4}} \times k^{\frac{3}{4}})

{As the terms are in product form, so we can treat them separately}

= 3^{(\frac{5}{2} + \frac{5}{2})} \times 2^{(\frac{3}{4} + \frac{3}{4})} \times h^{(\frac{5}{2} + \frac{5}{2})} \times k^{(\frac{3}{4} + \frac{3}{4})}

{Since, we know that a^{b} \times a^{c} = a^{b + c}}

= 3^{5} \times 2^{\frac{3}{2}} \times h^{5} \times k^{\frac{3}{2}}

= 243 \times 2\sqrt{2} \times h^{5}\times k^{\frac{3}{2} }

= 486\sqrt{2} \times h^{5} \times k\sqrt{k}

= 486h^{5}k\sqrt{2k} (Answer)

You might be interested in
PLEASE HELP WILL MARK BRAINLIEST
Serjik [45]

Answer:

Part 1: f(x)=0 has 0 solutions

Part 2: g(x)=0 has 2 solutions

Part 3: h(x)=0 has 1 solution

I graphed them

7 0
3 years ago
27 dollars markup 75 percent
Vlad1618 [11]
To get the price marked up you would multiply 27 by 0.75, which is 75% of the cost, and then add it to 27 which would give you the $27+75% markup.
6 0
3 years ago
Help please please please
melisa1 [442]

We are given with a rectangle whose length is 27 miles , and breadth is (3y + 1) miles and we are asked to find it's area . As , we know that , the area of a rectangle with Length and Breadth , <em><u>L</u></em> and <em><u>B</u></em> is given by <em><u>Area = L × B</u></em> respectively . Now , using this same formula in our question we have ;

{:\implies \quad \sf Area=27\times (3y+1)}

{:\implies \quad \sf Area=27\times 3y + 27\times 1}

{:\implies \quad \bf \therefore \quad \underline{\underline{Area=81y+27\:\: sq\:\: mi.}}}

3 0
2 years ago
45 is greater than 21?
miv72 [106K]

Answer:

Yes 45 is greater than 21 by 24 numbers

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
An employee joined a company in 2009 with a starting salary of $50,000. Every year this employee receives a raise of $1000 plus
stepladder [879]

Answer:

(a) The required recurrence relation for  the salary of the employee of n years after 2009 is a_n=1.05a_{n-1}+1000.

(b)The salary of the employee will be $83421.88 in 2017.

(c) \therefore a_n=70,000 . \ 1.05^n-20,000

Step-by-step explanation:

Summation of a G.P series

\sum_{i=0}^n r^i= \frac{r^{n+1}-1}{r-1}

(a)

Every year the salary is increasing 5% of the salary of the previous year plus $1000.

Let a_n represents the salary of the employee of n years after 2009.

Then a_{n-1} represents the salary of the employee of (n-1) years after 2009.

Then a_n= a_{n-1}+5\%.a_{n-1}+1000

             =a_{n-1}+0.05a_{n-1}+1000

             =(1+0.05)a_{n-1}+1000

            =1.05a_{n-1}+1000

The required recurrence relation for  the salary of the employee of n years after 2009 is a_n=1.05a_{n-1}+1000.

(b)

Given, a_0=\$50,000

a_n=1.05a_{n-1}+1000

Since 2017 is 8 years after 2009.

So, n=8.

∴ a_8

=1.05 a_7+1000

=1.05(1.05a_6+1000)+1000

=1.05^2a_6+1.05\times 1000+1000

=1.05^2(1.05a_5+1000)+1.05\times 1000+1000

=1.05^3a_5+1.05^2\times 1000+1.05\times 1000+1000

=1.05^3(1.05a_4+1000)+1.05^2\times 1000+1.05\times 1000+1000

=1.05^4a_4+1.05^3\times 1000+1.05^2\times 1000+1.05\times 1000+1000

=1.05^4(1.05a_3+1000)+1.05^3\times 1000+1.05^2\times 1000+1.05\times 1000+1000

=1.05^5a_3+1.05^4\times1000+1.05^3\times 1000+1.05^2\times 1000+1.05\times 1000+1000

=1.05^5(1.05a_2+1000)+1.05^4\times1000+1.05^3\times 1000+1.05^2\times 1000+1.05\times 1000+1000

=1.05^6a_2+1.05^51000+1.05^4\times1000+1.05^3\times 1000+1.05^2\times 1000+1.05\times 1000+1000

=1.05^6(1.05a_1+1000)+1.05^51000+1.05^4\times1000+1.05^3\times 1000+1.05^2\times 1000+1.05\times 1000+1000

=1.05^7a_1+1.05^6\times1000+1.05^51000+1.05^4\times1000+1.05^3\times 1000+1.05^2\times 1000+1.05\times 1000+1000

=1.05^7(1.05a_0+1000)+1.05^6\times1000+1.05^51000+1.05^4\times1000+1.05^3\times 1000+1.05^2\times 1000+1.05\times 1000+1000

=1.05^8a_0+1.05^7\times1000+1.05^6\times1000+1.05^51000+1.05^4\times1000+1.05^3\times 1000+1.05^2\times 1000+1.05\times 1000+1000

=1.05^8a_0+(1.05^7+1.05^6+1.05^5+1.05^4+1.05^3+1.05^2+1.05+1)1000

=1.05^8 \times 50,000+\frac{1.05^8-1}{1.05-1}\times 1000

=1.05^8\times 50,000+20,000(1.58^8-1)

=70,000\times 1.05^8-20,000

≈$83421.88

The salary of the employee will be $83421.88 in 2017.

(c)

Given, a_0=\$50,000

a_n=1.05a_{n-1}+1000

We successively apply the recurrence relation

a_n=1.05a_{n-1}+1000

    =1.05^1a_{n-1}+1.05^0.1000

   =1.05^1(1.05a_{n-2}+1000)+1.05^0.1000

   =1.05^2a_{n-2}+1.05^1.1000+1.05^0.1000

   =1.05^2(1.05a_{n-3}+1000)+(1.05^1.1000+1.05^0.1000)

   =1.05^3a_{n-3}+(1.05^2.1000+1.05^1.1000+1.05^0.1000)

                    ...............................

                   .................................

  =1.05^na_{n-n}+\sum_{i=0}^{n-1}1.05^i.1000

 =1.05^na_0+1000\sum_{i=0}^{n-1}1.05^i

 =1.05^n.50,000+1000.\frac{1.05^n-1}{1.05-1}

 =1.05^n.50,000+20,000.(1.05^n-1)

 =(50,000+20,000)1.05^n-20,000

 =70,000 . \ 1.05^n-20,000

\therefore a_n=70,000 . \ 1.05^n-20,000

6 0
3 years ago
Other questions:
  • Daryll has a piece of manila paper 48cm long and 36cm wide.She wants to cut it into squares,thr biggest possible,sothat there is
    9·2 answers
  • Will give brainliest answer please help !!!!
    6·1 answer
  • A printer prints 28 photos in 8 minutes. how many photos does it take to print 21 more photos
    5·1 answer
  • Compare the decimals 16.30 and 16.3.  Which comparison is correct?   A. 16.30 &lt; 16.3   B. 16.30 = 16.3   C. 16.30 &gt; 16.3 Q
    14·1 answer
  • PLEASE ANSWER THIS IS URGENT!!!!!!
    5·2 answers
  • 24. The relative frequency of getting a HEAD when tossing a coin is ⅜. How many HEADS would you expect if the coin is tossed 400
    14·1 answer
  • Dianne's profit from selling magazine subscriptions varies directly with the number of subscriptions sold. Dianne made $30 from
    9·1 answer
  • Three coins are flipped.
    7·2 answers
  • ​7.​Mrs. Deaton’s 6th grade class is creating a mural for the school entryway. Each student is creating a square with a side len
    9·1 answer
  • Select the statement where the value of the unknown number is 1.7
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!