1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marshall27 [118]
3 years ago
9

An employee joined a company in 2009 with a starting salary of $50,000. Every year this employee receives a raise of $1000 plus

5% of the salary of the previous year.
a) Set up a recurrence relation for the salary of this employee n years after 2009.
b) What will the salary of this employee be in 2017?
c) Find an explicit formula for the salary of this employee n years after 2009.
Mathematics
1 answer:
stepladder [879]3 years ago
6 0

Answer:

(a) The required recurrence relation for  the salary of the employee of n years after 2009 is a_n=1.05a_{n-1}+1000.

(b)The salary of the employee will be $83421.88 in 2017.

(c) \therefore a_n=70,000 . \ 1.05^n-20,000

Step-by-step explanation:

Summation of a G.P series

\sum_{i=0}^n r^i= \frac{r^{n+1}-1}{r-1}

(a)

Every year the salary is increasing 5% of the salary of the previous year plus $1000.

Let a_n represents the salary of the employee of n years after 2009.

Then a_{n-1} represents the salary of the employee of (n-1) years after 2009.

Then a_n= a_{n-1}+5\%.a_{n-1}+1000

             =a_{n-1}+0.05a_{n-1}+1000

             =(1+0.05)a_{n-1}+1000

            =1.05a_{n-1}+1000

The required recurrence relation for  the salary of the employee of n years after 2009 is a_n=1.05a_{n-1}+1000.

(b)

Given, a_0=\$50,000

a_n=1.05a_{n-1}+1000

Since 2017 is 8 years after 2009.

So, n=8.

∴ a_8

=1.05 a_7+1000

=1.05(1.05a_6+1000)+1000

=1.05^2a_6+1.05\times 1000+1000

=1.05^2(1.05a_5+1000)+1.05\times 1000+1000

=1.05^3a_5+1.05^2\times 1000+1.05\times 1000+1000

=1.05^3(1.05a_4+1000)+1.05^2\times 1000+1.05\times 1000+1000

=1.05^4a_4+1.05^3\times 1000+1.05^2\times 1000+1.05\times 1000+1000

=1.05^4(1.05a_3+1000)+1.05^3\times 1000+1.05^2\times 1000+1.05\times 1000+1000

=1.05^5a_3+1.05^4\times1000+1.05^3\times 1000+1.05^2\times 1000+1.05\times 1000+1000

=1.05^5(1.05a_2+1000)+1.05^4\times1000+1.05^3\times 1000+1.05^2\times 1000+1.05\times 1000+1000

=1.05^6a_2+1.05^51000+1.05^4\times1000+1.05^3\times 1000+1.05^2\times 1000+1.05\times 1000+1000

=1.05^6(1.05a_1+1000)+1.05^51000+1.05^4\times1000+1.05^3\times 1000+1.05^2\times 1000+1.05\times 1000+1000

=1.05^7a_1+1.05^6\times1000+1.05^51000+1.05^4\times1000+1.05^3\times 1000+1.05^2\times 1000+1.05\times 1000+1000

=1.05^7(1.05a_0+1000)+1.05^6\times1000+1.05^51000+1.05^4\times1000+1.05^3\times 1000+1.05^2\times 1000+1.05\times 1000+1000

=1.05^8a_0+1.05^7\times1000+1.05^6\times1000+1.05^51000+1.05^4\times1000+1.05^3\times 1000+1.05^2\times 1000+1.05\times 1000+1000

=1.05^8a_0+(1.05^7+1.05^6+1.05^5+1.05^4+1.05^3+1.05^2+1.05+1)1000

=1.05^8 \times 50,000+\frac{1.05^8-1}{1.05-1}\times 1000

=1.05^8\times 50,000+20,000(1.58^8-1)

=70,000\times 1.05^8-20,000

≈$83421.88

The salary of the employee will be $83421.88 in 2017.

(c)

Given, a_0=\$50,000

a_n=1.05a_{n-1}+1000

We successively apply the recurrence relation

a_n=1.05a_{n-1}+1000

    =1.05^1a_{n-1}+1.05^0.1000

   =1.05^1(1.05a_{n-2}+1000)+1.05^0.1000

   =1.05^2a_{n-2}+1.05^1.1000+1.05^0.1000

   =1.05^2(1.05a_{n-3}+1000)+(1.05^1.1000+1.05^0.1000)

   =1.05^3a_{n-3}+(1.05^2.1000+1.05^1.1000+1.05^0.1000)

                    ...............................

                   .................................

  =1.05^na_{n-n}+\sum_{i=0}^{n-1}1.05^i.1000

 =1.05^na_0+1000\sum_{i=0}^{n-1}1.05^i

 =1.05^n.50,000+1000.\frac{1.05^n-1}{1.05-1}

 =1.05^n.50,000+20,000.(1.05^n-1)

 =(50,000+20,000)1.05^n-20,000

 =70,000 . \ 1.05^n-20,000

\therefore a_n=70,000 . \ 1.05^n-20,000

You might be interested in
Verify if f(x)= 5-3x/2 and g(x)= 5-2x/3 are inverses. Please show step by step.
mestny [16]

Since f(g(x)) = g(f(x)) = x, hence the function f(x) and g(x) are inverses of each other.

<h3>Inverse of functions</h3>

In order to determine if the function f(x) and g(x) are inverses of each other, the composite function f(g(x)) = g(f(x))

Given the function

f(x)= 5-3x/2 and

g(x)= 5-2x/3

f(g(x)) = f(5-2x/3)

Substitute

f(g(x)) = 5-3(5-2x)/3)/2

f(g(x)) = (5-5+2x)/2

f(g(x)) = 2x/2

f(g(x)) = x

Similarly

g(f(x)) = 5-2(5-3x/2)/3

g(f(x)) = 5-5+3x/3

g(f(x)) = 3x/3

g(f(x)) =x

Since f(g(x)) = g(f(x)) = x, hence the function f(x) and g(x) are inverses of each other.

Learn more on inverse of a function here: brainly.com/question/19859934

#SPJ1

7 0
1 year ago
LAST QUESTION SEND HELP!!!!
dangina [55]
The answer is D. because you use Pythagoreans theory and do 12^2+23^2 which equals 673, then you root it and get 26. 
7 0
3 years ago
Read 2 more answers
This property says you can rewrite 3 x (4+5) as (3x4) +(3 x 5).
Murrr4er [49]

Answer:

distributive property

Step-by-step explanation:

Distributive property says that x(y + z) = (x*y) + (x *z)

3 0
3 years ago
Read 2 more answers
What is the equation of a circle centered at the origin with radius 20.. i cant find the answer and i even tried?
KIM [24]
General equation of a circle with centre (h, k) is given by:

(x - h)^{2} + (y - k)^{2} = r^{2}

Now, the origin is the centre and radius is 20, so substituting these points in yields:
x^{2} + y^{2} = 20^{2}
x^{2} + y^{2} = 400
4 0
3 years ago
Read 2 more answers
PLEASE ANSWER QUICK 2 MINUTES ON THE TIMER
snow_lady [41]
<h3>- - - - - - - - - - - - - - - ~Hello There!~ - - - - - - - - - - - - - - - </h3>

➷ Turn into improper fractions:

8/3 + 5/3

Now just add them:

13/3 or 4 1/3

➶ Hope This Helps You!

➶ Good Luck (:

➶ Have A Great Day ^-^

↬ ʜᴀɴɴᴀʜ ♡

8 0
3 years ago
Read 2 more answers
Other questions:
  • What is the result of subtracting the second equation from the first? \begin{aligned} 2x+7y &amp;= -8 \\\\ 2x-5y &amp;= -1 \end{
    13·1 answer
  • What is the solution set of 2x2 7x 5=0??
    14·1 answer
  • Consider the equation 5 + x = n. What must be true about any value of x if n is a negative number?
    12·1 answer
  • In a pair of similar polygons, corresponding angles are congruent.
    11·2 answers
  • John drove 48 miles and used 2 gallons of gas. How many gallons will he use if he drives 78 miles?
    15·2 answers
  • Which angles of the triangles measure 90°?
    6·2 answers
  • Ugh I’m kinda stuck someone can help me ?
    12·2 answers
  • 9x^3 - 12x^2 + 3x + 4​
    13·1 answer
  • Fill in the missing number. 11 + __ = 91
    10·2 answers
  • 22, 66, 198, ...<br> Find the 8th term.
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!