1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marshall27 [118]
3 years ago
9

An employee joined a company in 2009 with a starting salary of $50,000. Every year this employee receives a raise of $1000 plus

5% of the salary of the previous year.
a) Set up a recurrence relation for the salary of this employee n years after 2009.
b) What will the salary of this employee be in 2017?
c) Find an explicit formula for the salary of this employee n years after 2009.
Mathematics
1 answer:
stepladder [879]3 years ago
6 0

Answer:

(a) The required recurrence relation for  the salary of the employee of n years after 2009 is a_n=1.05a_{n-1}+1000.

(b)The salary of the employee will be $83421.88 in 2017.

(c) \therefore a_n=70,000 . \ 1.05^n-20,000

Step-by-step explanation:

Summation of a G.P series

\sum_{i=0}^n r^i= \frac{r^{n+1}-1}{r-1}

(a)

Every year the salary is increasing 5% of the salary of the previous year plus $1000.

Let a_n represents the salary of the employee of n years after 2009.

Then a_{n-1} represents the salary of the employee of (n-1) years after 2009.

Then a_n= a_{n-1}+5\%.a_{n-1}+1000

             =a_{n-1}+0.05a_{n-1}+1000

             =(1+0.05)a_{n-1}+1000

            =1.05a_{n-1}+1000

The required recurrence relation for  the salary of the employee of n years after 2009 is a_n=1.05a_{n-1}+1000.

(b)

Given, a_0=\$50,000

a_n=1.05a_{n-1}+1000

Since 2017 is 8 years after 2009.

So, n=8.

∴ a_8

=1.05 a_7+1000

=1.05(1.05a_6+1000)+1000

=1.05^2a_6+1.05\times 1000+1000

=1.05^2(1.05a_5+1000)+1.05\times 1000+1000

=1.05^3a_5+1.05^2\times 1000+1.05\times 1000+1000

=1.05^3(1.05a_4+1000)+1.05^2\times 1000+1.05\times 1000+1000

=1.05^4a_4+1.05^3\times 1000+1.05^2\times 1000+1.05\times 1000+1000

=1.05^4(1.05a_3+1000)+1.05^3\times 1000+1.05^2\times 1000+1.05\times 1000+1000

=1.05^5a_3+1.05^4\times1000+1.05^3\times 1000+1.05^2\times 1000+1.05\times 1000+1000

=1.05^5(1.05a_2+1000)+1.05^4\times1000+1.05^3\times 1000+1.05^2\times 1000+1.05\times 1000+1000

=1.05^6a_2+1.05^51000+1.05^4\times1000+1.05^3\times 1000+1.05^2\times 1000+1.05\times 1000+1000

=1.05^6(1.05a_1+1000)+1.05^51000+1.05^4\times1000+1.05^3\times 1000+1.05^2\times 1000+1.05\times 1000+1000

=1.05^7a_1+1.05^6\times1000+1.05^51000+1.05^4\times1000+1.05^3\times 1000+1.05^2\times 1000+1.05\times 1000+1000

=1.05^7(1.05a_0+1000)+1.05^6\times1000+1.05^51000+1.05^4\times1000+1.05^3\times 1000+1.05^2\times 1000+1.05\times 1000+1000

=1.05^8a_0+1.05^7\times1000+1.05^6\times1000+1.05^51000+1.05^4\times1000+1.05^3\times 1000+1.05^2\times 1000+1.05\times 1000+1000

=1.05^8a_0+(1.05^7+1.05^6+1.05^5+1.05^4+1.05^3+1.05^2+1.05+1)1000

=1.05^8 \times 50,000+\frac{1.05^8-1}{1.05-1}\times 1000

=1.05^8\times 50,000+20,000(1.58^8-1)

=70,000\times 1.05^8-20,000

≈$83421.88

The salary of the employee will be $83421.88 in 2017.

(c)

Given, a_0=\$50,000

a_n=1.05a_{n-1}+1000

We successively apply the recurrence relation

a_n=1.05a_{n-1}+1000

    =1.05^1a_{n-1}+1.05^0.1000

   =1.05^1(1.05a_{n-2}+1000)+1.05^0.1000

   =1.05^2a_{n-2}+1.05^1.1000+1.05^0.1000

   =1.05^2(1.05a_{n-3}+1000)+(1.05^1.1000+1.05^0.1000)

   =1.05^3a_{n-3}+(1.05^2.1000+1.05^1.1000+1.05^0.1000)

                    ...............................

                   .................................

  =1.05^na_{n-n}+\sum_{i=0}^{n-1}1.05^i.1000

 =1.05^na_0+1000\sum_{i=0}^{n-1}1.05^i

 =1.05^n.50,000+1000.\frac{1.05^n-1}{1.05-1}

 =1.05^n.50,000+20,000.(1.05^n-1)

 =(50,000+20,000)1.05^n-20,000

 =70,000 . \ 1.05^n-20,000

\therefore a_n=70,000 . \ 1.05^n-20,000

You might be interested in
What is the height of a trapezoid with a area of 79.2 and bases 4.2 and 9
julsineya [31]
The answer to this problem is 12. If you want me to write it out I can
8 0
3 years ago
Read 2 more answers
Simplify ech answer into a fraction, Show all work please!
Gnom [1K]

Answer:

the first one is -9/40. the second one is 109/20. the third one is -8/35.

Step-by-step explanation:

here is the work for the first one 3/8-.6 and convert into a simplified fraction and came up with -9/40. here is the work for the second one 4 4/3+0.7 and then convert into a simplified fraction and came up with 109/20. here is the work for the third one 4/7-0.8 and then convert into a simplified fraction and came up with -8/35.

6 0
3 years ago
Applying the Segment Addition Postulate
blsea [12.9K]

Answer:

144

Step-by-step explanation:

Find: Length of segment BC

CD+DB=BC

3x+8+4x+10=BC

7x+18=BC

BC also equals 8x (given on the screen shot)

7x+18= 8x

x=18

18 times 8 = 144

Check:

3( 18) + 8 + 4(18) + 10

54+8 + 72+10

64+ 80= 144  TRUE

7 0
3 years ago
I WILL GIVE BRAINLIEST
Xelga [282]

Answer:

y = 6x

Step-by-step explanation:

For a vertical stretch, you simply multiply x by the factor you want to stretch it by. 3x • 2 is 6x.

5 0
3 years ago
Read 2 more answers
Writing Trig Ratios.
notsponge [240]

Answer:

The ratios are as follows for the given angle:

sineX=opposite/hypotenuse

cosineX=adjacent/hypotenuse

tangentX=opposite/adjacent

Insert the appropriate values for each:

7.) sinZ=24/40

8.) sinC=14/50

9.) cosZ=24/30

10.) tanC=27/36

11.) cosZ=12/15

12.) cosC=27/45

8 0
3 years ago
Other questions:
  • 8 times the sum of 2 and 15
    14·1 answer
  • How are the expressions 1/4 of 12 and 12 divided by 4 related
    7·2 answers
  • I'll give BRAINIEST<br><br> .............
    12·1 answer
  • 115% of 80 is what number?
    13·2 answers
  • Write an expression to represent:<br> Nine more than the quotient of two and a number 1.
    10·1 answer
  • 1/5 of groceries are produce. 2/3 is vegetables. What fraction of the groceries are vegetables?
    8·2 answers
  • A swimmer is racing to the other side of the
    13·1 answer
  • Someone please help me I need help
    6·1 answer
  • Looking for the domain and range
    6·1 answer
  • Someone help with this fast!
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!