Answer:
(a) The required recurrence relation for the salary of the employee of n years after 2009 is
.
(b)The salary of the employee will be $83421.88 in 2017.
(c) ![\therefore a_n=70,000 . \ 1.05^n-20,000](https://tex.z-dn.net/?f=%5Ctherefore%20a_n%3D70%2C000%20.%20%5C%201.05%5En-20%2C000)
Step-by-step explanation:
Summation of a G.P series
(a)
Every year the salary is increasing 5% of the salary of the previous year plus $1000.
Let
represents the salary of the employee of n years after 2009.
Then
represents the salary of the employee of (n-1) years after 2009.
Then ![a_n= a_{n-1}+5\%.a_{n-1}+1000](https://tex.z-dn.net/?f=a_n%3D%20a_%7Bn-1%7D%2B5%5C%25.a_%7Bn-1%7D%2B1000)
![=a_{n-1}+0.05a_{n-1}+1000](https://tex.z-dn.net/?f=%3Da_%7Bn-1%7D%2B0.05a_%7Bn-1%7D%2B1000)
![=(1+0.05)a_{n-1}+1000](https://tex.z-dn.net/?f=%3D%281%2B0.05%29a_%7Bn-1%7D%2B1000)
![=1.05a_{n-1}+1000](https://tex.z-dn.net/?f=%3D1.05a_%7Bn-1%7D%2B1000)
The required recurrence relation for the salary of the employee of n years after 2009 is
.
(b)
Given, ![a_0=\$50,000](https://tex.z-dn.net/?f=a_0%3D%5C%2450%2C000)
![a_n=1.05a_{n-1}+1000](https://tex.z-dn.net/?f=a_n%3D1.05a_%7Bn-1%7D%2B1000)
Since 2017 is 8 years after 2009.
So, n=8.
∴ ![a_8](https://tex.z-dn.net/?f=a_8)
![=1.05 a_7+1000](https://tex.z-dn.net/?f=%3D1.05%20a_7%2B1000)
![=1.05(1.05a_6+1000)+1000](https://tex.z-dn.net/?f=%3D1.05%281.05a_6%2B1000%29%2B1000)
![=1.05^2a_6+1.05\times 1000+1000](https://tex.z-dn.net/?f=%3D1.05%5E2a_6%2B1.05%5Ctimes%201000%2B1000)
![=1.05^2(1.05a_5+1000)+1.05\times 1000+1000](https://tex.z-dn.net/?f=%3D1.05%5E2%281.05a_5%2B1000%29%2B1.05%5Ctimes%201000%2B1000)
![=1.05^3a_5+1.05^2\times 1000+1.05\times 1000+1000](https://tex.z-dn.net/?f=%3D1.05%5E3a_5%2B1.05%5E2%5Ctimes%201000%2B1.05%5Ctimes%201000%2B1000)
![=1.05^3(1.05a_4+1000)+1.05^2\times 1000+1.05\times 1000+1000](https://tex.z-dn.net/?f=%3D1.05%5E3%281.05a_4%2B1000%29%2B1.05%5E2%5Ctimes%201000%2B1.05%5Ctimes%201000%2B1000)
![=1.05^4a_4+1.05^3\times 1000+1.05^2\times 1000+1.05\times 1000+1000](https://tex.z-dn.net/?f=%3D1.05%5E4a_4%2B1.05%5E3%5Ctimes%201000%2B1.05%5E2%5Ctimes%201000%2B1.05%5Ctimes%201000%2B1000)
![=1.05^4(1.05a_3+1000)+1.05^3\times 1000+1.05^2\times 1000+1.05\times 1000+1000](https://tex.z-dn.net/?f=%3D1.05%5E4%281.05a_3%2B1000%29%2B1.05%5E3%5Ctimes%201000%2B1.05%5E2%5Ctimes%201000%2B1.05%5Ctimes%201000%2B1000)
![=1.05^5a_3+1.05^4\times1000+1.05^3\times 1000+1.05^2\times 1000+1.05\times 1000+1000](https://tex.z-dn.net/?f=%3D1.05%5E5a_3%2B1.05%5E4%5Ctimes1000%2B1.05%5E3%5Ctimes%201000%2B1.05%5E2%5Ctimes%201000%2B1.05%5Ctimes%201000%2B1000)
![=1.05^5(1.05a_2+1000)+1.05^4\times1000+1.05^3\times 1000+1.05^2\times 1000+1.05\times 1000+1000](https://tex.z-dn.net/?f=%3D1.05%5E5%281.05a_2%2B1000%29%2B1.05%5E4%5Ctimes1000%2B1.05%5E3%5Ctimes%201000%2B1.05%5E2%5Ctimes%201000%2B1.05%5Ctimes%201000%2B1000)
![=1.05^6a_2+1.05^51000+1.05^4\times1000+1.05^3\times 1000+1.05^2\times 1000+1.05\times 1000+1000](https://tex.z-dn.net/?f=%3D1.05%5E6a_2%2B1.05%5E51000%2B1.05%5E4%5Ctimes1000%2B1.05%5E3%5Ctimes%201000%2B1.05%5E2%5Ctimes%201000%2B1.05%5Ctimes%201000%2B1000)
![=1.05^6(1.05a_1+1000)+1.05^51000+1.05^4\times1000+1.05^3\times 1000+1.05^2\times 1000+1.05\times 1000+1000](https://tex.z-dn.net/?f=%3D1.05%5E6%281.05a_1%2B1000%29%2B1.05%5E51000%2B1.05%5E4%5Ctimes1000%2B1.05%5E3%5Ctimes%201000%2B1.05%5E2%5Ctimes%201000%2B1.05%5Ctimes%201000%2B1000)
![=1.05^7a_1+1.05^6\times1000+1.05^51000+1.05^4\times1000+1.05^3\times 1000+1.05^2\times 1000+1.05\times 1000+1000](https://tex.z-dn.net/?f=%3D1.05%5E7a_1%2B1.05%5E6%5Ctimes1000%2B1.05%5E51000%2B1.05%5E4%5Ctimes1000%2B1.05%5E3%5Ctimes%201000%2B1.05%5E2%5Ctimes%201000%2B1.05%5Ctimes%201000%2B1000)
![=1.05^7(1.05a_0+1000)+1.05^6\times1000+1.05^51000+1.05^4\times1000+1.05^3\times 1000+1.05^2\times 1000+1.05\times 1000+1000](https://tex.z-dn.net/?f=%3D1.05%5E7%281.05a_0%2B1000%29%2B1.05%5E6%5Ctimes1000%2B1.05%5E51000%2B1.05%5E4%5Ctimes1000%2B1.05%5E3%5Ctimes%201000%2B1.05%5E2%5Ctimes%201000%2B1.05%5Ctimes%201000%2B1000)
![=1.05^8a_0+1.05^7\times1000+1.05^6\times1000+1.05^51000+1.05^4\times1000+1.05^3\times 1000+1.05^2\times 1000+1.05\times 1000+1000](https://tex.z-dn.net/?f=%3D1.05%5E8a_0%2B1.05%5E7%5Ctimes1000%2B1.05%5E6%5Ctimes1000%2B1.05%5E51000%2B1.05%5E4%5Ctimes1000%2B1.05%5E3%5Ctimes%201000%2B1.05%5E2%5Ctimes%201000%2B1.05%5Ctimes%201000%2B1000)
![=1.05^8a_0+(1.05^7+1.05^6+1.05^5+1.05^4+1.05^3+1.05^2+1.05+1)1000](https://tex.z-dn.net/?f=%3D1.05%5E8a_0%2B%281.05%5E7%2B1.05%5E6%2B1.05%5E5%2B1.05%5E4%2B1.05%5E3%2B1.05%5E2%2B1.05%2B1%291000)
![=1.05^8 \times 50,000+\frac{1.05^8-1}{1.05-1}\times 1000](https://tex.z-dn.net/?f=%3D1.05%5E8%20%5Ctimes%2050%2C000%2B%5Cfrac%7B1.05%5E8-1%7D%7B1.05-1%7D%5Ctimes%201000)
![=1.05^8\times 50,000+20,000(1.58^8-1)](https://tex.z-dn.net/?f=%3D1.05%5E8%5Ctimes%2050%2C000%2B20%2C000%281.58%5E8-1%29)
![=70,000\times 1.05^8-20,000](https://tex.z-dn.net/?f=%3D70%2C000%5Ctimes%201.05%5E8-20%2C000)
≈$83421.88
The salary of the employee will be $83421.88 in 2017.
(c)
Given, ![a_0=\$50,000](https://tex.z-dn.net/?f=a_0%3D%5C%2450%2C000)
![a_n=1.05a_{n-1}+1000](https://tex.z-dn.net/?f=a_n%3D1.05a_%7Bn-1%7D%2B1000)
We successively apply the recurrence relation
![a_n=1.05a_{n-1}+1000](https://tex.z-dn.net/?f=a_n%3D1.05a_%7Bn-1%7D%2B1000)
![=1.05^1a_{n-1}+1.05^0.1000](https://tex.z-dn.net/?f=%3D1.05%5E1a_%7Bn-1%7D%2B1.05%5E0.1000)
![=1.05^1(1.05a_{n-2}+1000)+1.05^0.1000](https://tex.z-dn.net/?f=%3D1.05%5E1%281.05a_%7Bn-2%7D%2B1000%29%2B1.05%5E0.1000)
![=1.05^2a_{n-2}+1.05^1.1000+1.05^0.1000](https://tex.z-dn.net/?f=%3D1.05%5E2a_%7Bn-2%7D%2B1.05%5E1.1000%2B1.05%5E0.1000)
![=1.05^2(1.05a_{n-3}+1000)+(1.05^1.1000+1.05^0.1000)](https://tex.z-dn.net/?f=%3D1.05%5E2%281.05a_%7Bn-3%7D%2B1000%29%2B%281.05%5E1.1000%2B1.05%5E0.1000%29)
![=1.05^3a_{n-3}+(1.05^2.1000+1.05^1.1000+1.05^0.1000)](https://tex.z-dn.net/?f=%3D1.05%5E3a_%7Bn-3%7D%2B%281.05%5E2.1000%2B1.05%5E1.1000%2B1.05%5E0.1000%29)
...............................
.................................
![=1.05^na_{n-n}+\sum_{i=0}^{n-1}1.05^i.1000](https://tex.z-dn.net/?f=%3D1.05%5Ena_%7Bn-n%7D%2B%5Csum_%7Bi%3D0%7D%5E%7Bn-1%7D1.05%5Ei.1000)
![=1.05^na_0+1000\sum_{i=0}^{n-1}1.05^i](https://tex.z-dn.net/?f=%3D1.05%5Ena_0%2B1000%5Csum_%7Bi%3D0%7D%5E%7Bn-1%7D1.05%5Ei)
![=1.05^n.50,000+1000.\frac{1.05^n-1}{1.05-1}](https://tex.z-dn.net/?f=%3D1.05%5En.50%2C000%2B1000.%5Cfrac%7B1.05%5En-1%7D%7B1.05-1%7D)
![=1.05^n.50,000+20,000.(1.05^n-1)](https://tex.z-dn.net/?f=%3D1.05%5En.50%2C000%2B20%2C000.%281.05%5En-1%29)
![=(50,000+20,000)1.05^n-20,000](https://tex.z-dn.net/?f=%3D%2850%2C000%2B20%2C000%291.05%5En-20%2C000)
![=70,000 . \ 1.05^n-20,000](https://tex.z-dn.net/?f=%3D70%2C000%20.%20%5C%201.05%5En-20%2C000)
![\therefore a_n=70,000 . \ 1.05^n-20,000](https://tex.z-dn.net/?f=%5Ctherefore%20a_n%3D70%2C000%20.%20%5C%201.05%5En-20%2C000)