The question is incomplete. Here is the complete question:
A machine covers 5/8 square foot in 1/4 hour. what is the unit rate?
Answer:
2.5 square feet per hour
Step-by-step explanation:
Given:
Area covered by a machine = 
Time taken to cover the given area = 
Now, unit rate of the first quantity with respect to second quantity is the magnitude of the first quantity being when the second quantity is one unit.
Here, the first quantity is the area covered and the second quantity is the time taken.
So, unit rate is the area covered by the machine in 1 hour.
In order to find that, we use the unitary method and divide the area by the total time taken. Therefore,

Thus, the unit rate is 2.5 square feet per hour.
Answer:
Volume of a cup
The shape of the cup is a cylinder. The volume of a cylinder is:
\text{Volume of a cylinder}=\pi \times (radius)^2\times heightVolume of a cylinder=π×(radius)
2
×height
The diameter fo the cup is half the diameter: 2in/2 = 1in.
Substitute radius = 1 in, and height = 4 in in the formula for the volume of a cylinder:
\text{Volume of the cup}=\pi \times (1in)^2\times 4in\approx 12.57in^3Volume of the cup=π×(1in)
2
×4in≈12.57in
3
2. Volume of the sink:
The volume of the sink is 1072in³ (note the units is in³ and not in).
3. Divide the volume of the sink by the volume of the cup.
This gives the number of cups that contain a volume equal to the volume of the sink:
\dfrac{1072in^3}{12.57in^3}=85.3cups\approx 85cups
12.57in
3
Step-by-step explanation:
Answer:
Step-by-step explanation:
Simplify expression with rational exponents can look like a huge thing when you first see them with those fractions sitting up there in the exponent but let's remember our properties for dealing with exponents. We can apply those with fractions as well.
Examples
(a) 
From above, we have a power to a power, so, we can think of multiplying the exponents.
i.e.


Let's recall that when we are dealing with exponents that are fractions, we can simplify them just like normal fractions.
SO;


Let's take a look at another example

Here, we apply the
to both 27 and 


Let us recall that in the rational exponent, the denominator is the root and the numerator is the exponent of such a particular number.
∴
![= \Bigg (\sqrt[3]{27}^{5} \times x^{10} }\Bigg)](https://tex.z-dn.net/?f=%3D%20%5CBigg%20%28%5Csqrt%5B3%5D%7B27%7D%5E%7B5%7D%20%5Ctimes%20x%5E%7B10%7D%20%7D%5CBigg%29)


Answer:
dry and hot
Step-by-step explanation:
It looks very similar to a cactus which also lives in this in a dry and hot area
Answer:
40
Step-by-step explanation:
a^2+b^2=c^2