check the transformation template below, hmmm so to get the graph of "y" move to the right by 1 unit, we can simply make C = -1.

now, the x-intercept is simply where the graph touches the x-axis, and when that happens y = 0, so
![\begin{array}{llll} \textit{Logarithm Cancellation Rules} \\\\ log_a a^x = x\qquad \qquad a^{log_a x}=x\leftarrow \textit{let's use this rule} \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \stackrel{y}{0}~~ = ~~\log_2(x-1)\implies 2^0=2^{\log_2(x-1)}\implies 2^0=x-1 \\\\\\ 1=x-1\implies 2=x~\hspace{10em}\stackrel{x-intercept}{(2~~,~~0)}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bllll%7D%20%5Ctextit%7BLogarithm%20Cancellation%20Rules%7D%20%5C%5C%5C%5C%20log_a%20a%5Ex%20%3D%20x%5Cqquad%20%5Cqquad%20a%5E%7Blog_a%20x%7D%3Dx%5Cleftarrow%20%5Ctextit%7Blet%27s%20use%20this%20rule%7D%20%5Cend%7Barray%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Cstackrel%7By%7D%7B0%7D~~%20%3D%20~~%5Clog_2%28x-1%29%5Cimplies%202%5E0%3D2%5E%7B%5Clog_2%28x-1%29%7D%5Cimplies%202%5E0%3Dx-1%20%5C%5C%5C%5C%5C%5C%201%3Dx-1%5Cimplies%202%3Dx~%5Chspace%7B10em%7D%5Cstackrel%7Bx-intercept%7D%7B%282~~%2C~~0%29%7D)
Answer:
x = 55 or x = 15
Step-by-step explanation:
Solve Absolute Value.
We know that either 1/5x - 7 = 4 or 1/5x - 7 = -4.
1/5x - 7 = 4
1/5x - 7 + 7 = 4 + 7
1/5x = 11
1/5x (5) = 11 (5)
x = 55 (one possibility)
1/5x - 7 = -4
1/5x - 7 + 7 = -4 + 7
1/5x = 3
1/5x (5) = 3 (5)
x = 15 (second possibility)
Answer: 40
Step-by-step explanation:
Answer:
16
Step-by-step explanation:
+
+
+
16