Question: If the subspace of all solutions of
Ax = 0
has a basis consisting of vectors and if A is a matrix, what is the rank of A.
Note: The rank of A can only be determined if the dimension of the matrix A is given, and the number of vectors is known. Here in this question, neither the dimension, nor the number of vectors is given.
Assume: The number of vectors is 3, and the dimension is 5 × 8.
Answer:
The rank of the matrix A is 5.
Step-by-step explanation:
In the standard basis of the linear transformation:
f : R^8 → R^5, x↦Ax
the matrix A is a representation.
and the dimension of kernel of A, written as dim(kerA) is 3.
By the rank-nullity theorem, rank of matrix A is equal to the subtraction of the dimension of the kernel of A from the dimension of R^8.
That is:
rank(A) = dim(R^8) - dim(kerA)
= 8 - 3
= 5
Answer:

Step-by-step explanation:
Complex numbers identity:
The complex numbers identity is:

Square of the sum:

In this question:





So

For the second one 1 mph equals 1.6 km so i’m pretty sure it would be all of them
Answer:
The rational number equivalent to 3.24 repeating is 321/99
Step-by-step explanation:
To convert the decimal number to a rational number we can state this number and its multiples of 10, trying to find two number with identical decimal parts:
n=3.24242424...
10n=32.4242424....
100n=324.2424242...
Now, 100n and n have the same decimal part, then by subtracting these numbers we obtain:
100n-n=324.24242424...-3.24242424... = 321
99n = 321
n = 321/99