Answer: Veronica is not correct
Explanation:
The AAA theorem, aka the AA theorem, only applies to similar triangles. We cannot use it to prove two triangles are congruent or not. We would need to know info about at least one pair of sides. So based on this diagram, we don't have enough information to know if triangle HAT is congruent to triangle PAM or not.
A similar example to this is to consider two equilateral triangles. Let's call them triangle A and triangle B. If equilateral triangle A has side lengths of 2, and has side lengths of 10, we can see that the triangles are not congruent. However, the triangles are similar because the corresponding angles equal one another. One triangle is a scaled copy of the other. This example is a counterexample as to why the AAA theorem is not a valid congruence theorem.
Answer:
The ship S is at 10.05 km to coastguard P, and 12.70 km to coastguard Q.
Step-by-step explanation:
Let the distance of the ship to coastguard P be represented by x, and its distance to coastguard Q be represented by y.
But,
<P = 048°
<Q =
- 
= 0
Sum of angles in a triangle = 
<P + <Q + <S = 
048° + 0
+ <S = 
+ <S = 
<S =
- 
= 
<S = 
Applying the Sine rule,
=
= 
= 
= 
= 
⇒ y = 
= 12.703
y = 12.70 km
= 
= 
= 
⇒ x = 
= 10.0475
x = 10.05 km
Thus,
the ship S is at a distance of 10.05 km to coastguard P, and 12.70 km to coastguard Q.
<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3Answer:
2 * 2 = 4
<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3
For this case, we observe that the dispersion diagram has a behavior similar to a straight line.
we observe that as the values of x increase, the values of y decrease.
Therefore, the line is of negative slope.
Answer:
Linear
option C
Answer:
A or D
Step-by-step explanation: