1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexira [117]
2 years ago
13

Pls help me and show work pls

Mathematics
1 answer:
ElenaW [278]2 years ago
3 0
3/6 cause there are 3 evens and 3 odds on a dice
You might be interested in
For what value of x is the parallelogram a rhombus.
Stells [14]

Answer:

Step-by-step explanation:

2 × ( 3x + 6 )° + ( 16x + 14 )° = 180°

22x + 26 = 180

22x = 154

x = 7

4 0
2 years ago
5. given ABC, find the value of x
Fudgin [204]
There's no question g
6 0
3 years ago
Factor the polynomial 8x² - 24x – 224 completely. A- 4(x + 4)(x-7) B- (4x + 16X(12x – 14) C- 8(x + 4)(x - 7) ht D- 2(4x + 16)(x
alisha [4.7K]

Answer:

The correct answer would be...

c. 8(x + 4)(x - 7)

Hope this helps!

8 0
3 years ago
The projected rate of increase in enrollment at a new branch of the UT-system is estimated by E ′ (t) = 12000(t + 9)−3/2 where E
nexus9112 [7]

Answer:

The projected enrollment is \lim_{t \to \infty} E(t)=10,000

Step-by-step explanation:

Consider the provided projected rate.

E'(t) = 12000(t + 9)^{\frac{-3}{2}}

Integrate the above function.

E(t) =\int 12000(t + 9)^{\frac{-3}{2}}dt

E(t) =-\frac{24000}{\left(t+9\right)^{\frac{1}{2}}}+c

The initial enrollment is 2000, that means at t=0 the value of E(t)=2000.

2000=-\frac{24000}{\left(0+9\right)^{\frac{1}{2}}}+c

2000=-\frac{24000}{3}+c

2000=-8000+c

c=10,000

Therefore, E(t) =-\frac{24000}{\left(t+9\right)^{\frac{1}{2}}}+10,000

Now we need to find \lim_{t \to \infty} E(t)

\lim_{t \to \infty} E(t)=-\frac{24000}{\left(t+9\right)^{\frac{1}{2}}}+10,000

\lim_{t \to \infty} E(t)=10,000

Hence, the projected enrollment is \lim_{t \to \infty} E(t)=10,000

8 0
2 years ago
If three pounds of coffee costs $22.56, what is the cost of 1
NeX [460]

Answer:

$7.52 = 7 dollars and 52 cents.

Step-by-step explanation:

Given that three pounds of coffee = $22.56

1 pound of coffee = $22.56/3

Thus, we would have:

\frac{22.56}{3} = 7.52.

A pound of coffee = $7.52

$7.52 = 7 dollars and 52 cents.

8 0
2 years ago
Other questions:
  • If you simplify 4(3x + 8) - 3 . What will your answer be ?
    10·2 answers
  • Noah built a fenced dog run that is 8 yards long and 6 yards wide. He placed posts at every corner and every yard along the leng
    6·1 answer
  • Divide using long division.
    7·2 answers
  • If I divide xy by y am I left with just x
    11·1 answer
  • Consider this equation:
    15·1 answer
  • True or False: Proportional relationships are a type of nonlinear function.
    5·1 answer
  • Help me with this image
    14·2 answers
  • Which number line represents the solution set for the inequality –4(x 3) ≤ –2 – 2x?
    8·1 answer
  • Hernandez Company issued $380,000, 7%, 10-year bonds on January 1, 2022, for $407,968. This price resulted in an effective-inter
    12·1 answer
  • G(n)=n+3<br> f(n)=-n-5<br> Find g(3)-f(3)
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!