1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ANEK [815]
3 years ago
12

When you reverse the digits in a certain two-digit number you decrease its value by 18. what is the number if the sum of its dig

its is 12?
a.92
b.75
c.45
d.86?
Mathematics
1 answer:
Maksim231197 [3]3 years ago
5 0
Answer: The number is 75

Lets start by defining the 2-digit number.

--------------------------------------------------------------
Define the number
--------------------------------------------------------------
Let x be the digit in the tens place and y be the digit in the ones place.
The number is 10x + y
The reverse of the number is 10y + x 

Now we will construct the equations needed

--------------------------------------------------------------
Construct equations
--------------------------------------------------------------
When the digits are reversed, the value decreases by 18:
(10x + y) - (10y + x) = 18 .    ← Apply distributive property
10x + y - 10y - x = 18            ←Combine like terms
9x - 9y = 18                           ←Divide by 9 through
x - y = 2

The sum of the digits is 12:
x + y = 12

Now that we have the two equations, we can solve for x and y.

--------------------------------------------------------------
Solve for x and y
--------------------------------------------------------------
x - y  = 2          ---------------------- (equation 1)
x + y = 12        ---------------------- (equation 2)

--------------------------------------------------------------
Make x the subject in equation 1
--------------------------------------------------------------
x - y = 2      ← Add y from both sides
    + y   +y       

x = 2 + y 

--------------------------------------------------------------
Substitute x = 2 + y into equation 2
--------------------------------------------------------------
x + y = 12                      ← Substitute x = 2 + y
2 + y + y = 12                ← combine like terms  
2 + 2y = 12                    ← Subtract 2 from both sides
-2           -2
2y = 10                          ← Divide by 2 on both sides
÷2    ÷2
y = 5

--------------------------------------------------------------
Substitute y = 5 into equation 1
--------------------------------------------------------------
x - y = 2                          ← substitute  y = 5
x - 5 = 2                          ← add 5 on both sides
   +5   +5
x = 7

Now we know the value of x and y. Lets find the 2-digit number.

--------------------------------------------------------------
Find the 2-digit number
--------------------------------------------------------------
The number = 10x + y = 10(7) + 5 = 75

--------------------------------------------------------------
Answer: The number is 75
--------------------------------------------------------------

You might be interested in
What is the GCF of 96 and 567 The GCF is.<br><br>A 16<br>B 2<br>C 14<br>D 8​
vazorg [7]

Answer:

c

Step-by-step explanation:

4 0
3 years ago
3 intersecting lines are shown. A line contains points E, D, A, and B. Another line intersects the line at point A and contains
GREYUIT [131]

Answer:

The one with arrows are the answers

->Line segment E B  is bisected by Line segment D F .

->A is the midpoint of Line segment F C .

Line segment F C  bisects Line segment D B.

->Line segment E B  is a segment bisector.

->FA = One-halfFC.

Line segment D A is congruent to Line segment A B .

Step-by-step explanation:

I did it on edge and got it right

5 0
3 years ago
Read 2 more answers
Prove A-(BnC) = (A-B)U(A-C), explain with an example​
NikAS [45]

Answer:

Prove set equality by showing that for any element x, x \in (A \backslash (B \cap C)) if and only if x \in ((A \backslash B) \cup (A \backslash C)).

Example:

A = \lbrace 0,\, 1,\, 2,\, 3 \rbrace.

B = \lbrace0,\, 1 \rbrace.

C = \lbrace0,\, 2 \rbrace.

\begin{aligned} & A \backslash (B \cap C) \\ =\; & \lbrace 0,\, 1,\, 2,\, 3 \rbrace \backslash \lbrace 0 \rbrace \\ =\; & \lbrace 1,\, 2,\, 3 \rbrace \end{aligned}.

\begin{aligned}& (A \backslash B) \cup (A \backslash C) \\ =\; & \lbrace 2,\, 3\rbrace \cup \lbrace 1,\, 3 \rbrace \\ =\; & \lbrace 1,\, 2,\, 3 \rbrace\end{aligned}.

Step-by-step explanation:

Proof for [x \in (A \backslash (B \cap C))] \implies [x \in ((A \backslash B) \cup (A \backslash C))] for any element x:

Assume that x \in (A \backslash (B \cap C)). Thus, x \in A and x \not \in (B \cap C).

Since x \not \in (B \cap C), either x \not \in B or x \not \in C (or both.)

  • If x \not \in B, then combined with x \in A, x \in (A \backslash B).
  • Similarly, if x \not \in C, then combined with x \in A, x \in (A \backslash C).

Thus, either x \in (A \backslash B) or x \in (A \backslash C) (or both.)

Therefore, x \in ((A \backslash B) \cup (A \backslash C)) as required.

Proof for [x \in ((A \backslash B) \cup (A \backslash C))] \implies [x \in (A \backslash (B \cap C))]:

Assume that x \in ((A \backslash B) \cup (A \backslash C)). Thus, either x \in (A \backslash B) or x \in (A \backslash C) (or both.)

  • If x \in (A \backslash B), then x \in A and x \not \in B. Notice that (x \not \in B) \implies (x \not \in (B \cap C)) since the contrapositive of that statement, (x \in (B \cap C)) \implies (x \in B), is true. Therefore, x \not \in (B \cap C) and thus x \in A \backslash (B \cap C).
  • Otherwise, if x \in A \backslash C, then x \in A and x \not \in C. Similarly, x \not \in C \! implies x \not \in (B \cap C). Therefore, x \in A \backslash (B \cap C).

Either way, x \in A \backslash (B \cap C).

Therefore, x \in ((A \backslash B) \cup (A \backslash C)) implies x \in A \backslash (B \cap C), as required.

8 0
3 years ago
Jackson wants to divide a 2/5 pound box of trail mix into small bags. Each of the bags will hold 1/10 pound of trail mix. How ma
Vinvika [58]

Answer:

Jackson will fill 4 bags of trail mix

5 0
3 years ago
Read 2 more answers
A restaurant stacked 7 pieces of wood on top of one another if each piece was 4/8 of a foot tall how tall was his pile
Contact [7]
His pile was 3 1/2 ft
Hope this helps!
7 0
3 years ago
Other questions:
  • Determine whether or not F is a conservative vector field. If it is, find a function f such that F = ∇f. (If the vector field is
    14·1 answer
  • I NEED HELP PLEASE, THANKS! :)
    11·1 answer
  • Help me i neeed am answer
    10·1 answer
  • Hugh is paid 119 for 8.5 hours of work what is the rate of pay per hour ?
    15·1 answer
  • Callie brought 2 gallons of juice for 2.58 per gallon.She sold the juice in 1-cup servings for 0.75 each.Each serving is 1/16 ga
    7·1 answer
  • Anastasia’s mom baked a giant sugar cookie for her birthday. On her birthday, ⅝ of the birthday cookie was eaten. The next day h
    14·1 answer
  • What is the value of x? Enter your answer in the box. x=
    6·2 answers
  • What will the coordinate K(3, - 3) be after the translation 8 units to the left and 7 units up.
    8·2 answers
  • Hi, please help me<br><br>c - 4d =<br><br>C= 10<br>D=2<br><br>It's algebra​
    9·1 answer
  • If 15 ounces of candy cost $3.75 what is the price per unit
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!