1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ahrayia [7]
3 years ago
9

HELP

Mathematics
1 answer:
lord [1]3 years ago
6 0

Answer:

32 yards

Step-by-step explanation:

Carmen walked 30 yards due North and 12 yards West.

Now, if we join the initial and final position of Carmen and in this path Carmen comes back to her original position then the path, traveled by Carmen will form a right triangle and the direct path from her initial point to final point will be the hypotenuse of the right triangle.

Now, the two perpendicular legs of the triangle are respectively 30 yards and 12 yards.

Therefore, Carmen travel (Applying Pythagoras Theorem) to get back to her initial position by \sqrt{30^{2} + 12^{2}} = 32.31 yards ≈ 32 yards (to the nearest yard). (Answer)

You might be interested in
A hockey team is convinced that the coin used to determine the order of play is weighted. The team captain steals this special c
fredd [130]

Answer:

Since x= 12 (0.006461) does not fall in the critical region so we accept our null hypothesis and conclude that the coin is fair.

Step-by-step explanation:

Let p be the probability of heads in a single toss of the coin. Then our null hypothesis that the coin is fair will be formulated as

H0 :p 0.5   against   Ha: p ≠ 0.5

The significance level is approximately 0.05

The test statistic to be used is number of heads x.

Critical Region: First we compute the probabilities associated with X the number of heads using the binomial distribution

Heads (x)        Probability (X=x)                        Cumulative     Decumulative

0                        1/16384 (1)             0.000061     0.000061

1                         1/16384  (14)         0.00085             0.000911

2                       1/16384 (91)           0.00555             0.006461

3                       1/16384(364)         0.02222

4                       1/16384(1001)         0.0611

5                       1/16384(2002)       0.122188

6                        1/16384(3003)      0.1833

7                         1/16384(3432)      0.2095

8                        1/16384(3003)       0.1833

9                        1/16384(2002)       0.122188

10                       1/16384(1001)        0.0611

11                       1/16384(364)        0.02222

12                      1/16384(91)            0.00555                             0.006461

13                     1/16384(14)              0.00085                           0.000911

14                       1/16384(1)            0.000061                            0.000061

We use the cumulative and decumulative column as the critical region is composed of two portions of area ( probability) one in each tail of the distribution. If  alpha = 0.05 then alpha by 2 - 0.025 ( area in each tail).

We observe that P (X≤2) =   0.006461 > 0.025

and

P ( X≥12 ) = 0.006461 > 0.025

Therefore true significance level is

∝=  P (X≤0)+P ( X≥14 ) = 0.000061+0.000061= 0.000122

Hence critical region is (X≤0) and ( X≥14)

Computation x= 12

Since x= 12 (0.006461) does not fall in the critical region so we accept our null hypothesis and conclude that the coin is fair.

3 0
3 years ago
I need help with number 10 ASAP
anzhelika [568]

i'm 75% sure the answer is C hope this helps


3 0
3 years ago
D/d{cosec^-1(1+x²/2x)} is equal to​
SIZIF [17.4K]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\dfrac{d}{dx} {cosec}^{ - 1} \bigg( \dfrac{1 +  {x}^{2} }{2x} \bigg)

Let assume that

\rm :\longmapsto\:y =  {cosec}^{ - 1} \bigg( \dfrac{1 +  {x}^{2} }{2x} \bigg)

We know,

\boxed{\tt{  {cosec}^{ - 1}x =  {sin}^{ - 1}\bigg( \dfrac{1}{x} \bigg)}}

So, using this, we get

\rm :\longmapsto\:y = sin^{ - 1} \bigg( \dfrac{2x}{1 +  {x}^{2} } \bigg)

Now, we use Method of Substitution, So we substitute

\red{\rm :\longmapsto\:x = tanz \: \rm\implies \:z =  {tan}^{ - 1}x}

So, above expression can be rewritten as

\rm :\longmapsto\:y = sin^{ - 1} \bigg( \dfrac{2tanz}{1 +  {tan}^{2} z} \bigg)

\rm :\longmapsto\:y = sin^{ - 1} \bigg( sin2z \bigg)

\rm\implies \:y = 2z

\bf\implies \:y = 2 {tan}^{ - 1}x

So,

\bf\implies \: {cosec}^{ - 1}\bigg( \dfrac{1 +  {x}^{2} }{2x} \bigg) = 2 {tan}^{ - 1}x

Thus,

\rm :\longmapsto\:\dfrac{d}{dx} {cosec}^{ - 1} \bigg( \dfrac{1 +  {x}^{2} }{2x} \bigg)

\rm \:  =  \: \dfrac{d}{dx}(2 {tan}^{ - 1}x)

\rm \:  =  \: 2 \: \dfrac{d}{dx}( {tan}^{ - 1}x)

\rm \:  =  \: 2 \times \dfrac{1}{1 +  {x}^{2} }

\rm \:  =  \: \dfrac{2}{1 +  {x}^{2} }

<u>Hence, </u>

\purple{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx} {cosec}^{ - 1} \bigg( \dfrac{1 +  {x}^{2} }{2x} \bigg) =  \frac{2}{1 +  {x}^{2} }}}}

<u>Hence, Option (d) is </u><u>correct.</u>

6 0
2 years ago
Define mathematically divides means?
vaieri [72.5K]

Answer:

in mathematics, the word "division" means the operation which is the opposite of multiplication. ... Each, of those three, means "6 divided by 3" giving 2 as the answer. The first number is the dividend (6), and the second number is the divisor (3). The result (or answer) is the quotient.

Step-by-step explanation:

PLZ MARK BRAINLIEST

3 0
3 years ago
Read 2 more answers
What is a line that passes through (-7,3 and (-6,-1)
Serggg [28]

Answer:

y=-4x-25

Step-by-step explanation:

m=(y2-y1)/(x2-x1)

m=(-1-3)/(-6-(-7))

m=-4/(-6+7)

m=-4/1

m=-4

y-y1=m(x-x1)

y-3=-4(x-(-7))

y-3=-4(x+7)

y=-4x-28+3

y=-4x-25

3 0
3 years ago
Other questions:
  • How to do quadratic formula
    8·1 answer
  • How to find the length of a major arc
    5·1 answer
  • How to draw an area model to multiply 1.1x2.4?
    15·1 answer
  • Use the explicit rule given to write recursive rule for the geometric sequence:
    10·2 answers
  • i buy 3 pineapples and 2 melons for $34 and my friend buys 2 pineapples and 4 melons for $36. how much do the pineapples and mel
    14·1 answer
  • Find the area of the triangle, WILL GIVE BRAINLIEST
    11·2 answers
  • Can someone help me with this pls (Algebra 2)
    13·1 answer
  • Drag the missing statements and reasons to the correct spot to complete the proof
    9·1 answer
  • What is the value of x?
    5·1 answer
  • What are the domain and range of the real-valued function f(x)=2/x?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!