Answer:
True. The absolute value produces a positive value, but then when you negate that value, it would always be negative. What's important is we're not taking the negative of the number being absolute valued itself, but rather we're taking a negative of the result.
Step-by-step explanation:
<span>We can safely assume that 1212 is a misprint and the number of seats in a row exceeds the number of rows by 12.
Let r = # of rows and s = # of seats in a row.
Then, the total # of seats is T = r x s = r x ( r + 12), since s is 12 more than the # of rows.
Then
r x (r + 12) = 1564
or
r**2 + 12*r - 1564 = 0, which is a quadratic equation.
The general solution of a quadratic equation is:
x = (-b +or- square-root( b**2 - 4ac))/2a
In our case, a = 1, b = +12 and c = -1564, so
x = (-12 +or- square-root( 12*12 - 4*1*(-1564) ) ) / 2*1
= (-12 +or- square-root( 144 + 6256 ) ) / 2
= (-12 +or- square-root( 6400 ) ) / 2
= (-12 +or- 80) / 2
= 34 or - 46
We ignore -46 since negative rows are not possible, and have:
rows = 34
and
seats per row = 34 + 12 = 46
as a check 34 x 46 = 1564 = total seats</span>
Answer:
B
Step-by-step explanation:
the money increases hourly so A and C are wrong. and it is constant so the answer is B
Answer:
5 cheeseburgers would be 12.50
Step-by-step explanation:
5 / 2 is 2.50 , 2.50 for one cheeseburger times 5 is 12.50
The vertex-form equation is
y = a(x+1)² -16
Putting in the y-intercept values, we have
-15 = a(0+1)² -16
1 = a . . . . . . . . . . . add 16
Then the x-intercepts can be found where y=0.
0 = (x+1)² -16
16 = (x+1)²
±4 = x+1
x = -1 ± 4 =
{-5, 3}