Answer:
V₂ = 946.72 mL
Explanation:
Given data;
Initial pressure = 0.926 atm
Initial volume = 457 mL
Temperature = constant = 29.5°C
Final pressure = 0.447 atm
Final volume = ?
Solution:
The given problem will be solved through the Boyle's law,
Mathematical expression:
P₁V₁ = P₂V₂
P₁ = Initial pressure
V₁ = initial volume
P₂ = final pressure
V₂ = final volume
by putting values,
P₁V₁ = P₂V₂
0.926 atm × 457 mL = 0.447 atm × V₂
V₂ = 423.18 atm. mL/ 0.447 atm
V₂ = 946.72 mL
B. This looks like ice turning to water then to steam
Answer:
The law of conservation of energy states that energy can neither be created nor destroyed - only converted from one form of energy to another.
Explanation:
This means that a system always has the same amount of energy, unless it's added from the outside.
Answer:
7.3 atm
Explanation:
- Use the formula P1V1 = P2V2
- Rearrange formula and then plug in values.
- Hope this helped! Let me know if you need more help or a further explanation.
Answer:

Explanation:
Hello!
In this case, since the study of the bond energy allows us to compute the enthalpies of some reactions, for this combination reaction by which ammonia is yielded, we understand the enthalpy of reaction equals the enthalpy of formation of ammonia, and, in terms of the bonds energy we can write:

Whereas the bonds enthalpy of those bonds that get broken cover the N≡N and the three H-H bonds at the reactants side and the enthalpy of those bonds that are formed cover the six N-H bonds at the products; which means we obtain:

Which differs from the theoretical value that is -46 kJ/mol.
Best regards!