1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alisiya [41]
3 years ago
15

Consider the following initial value problem, in which an input of large amplitude and short duration has been idealized as a de

lta function. y′+y=7+δ(t−3),y(0)=0. y′+y=7+δ(t−3),y(0)=0. Find the Laplace transform of the solution. Y(s)=L{y(t)}=Y(s)=L{y(t)}= Obtain the solution y(t)y(t).
Mathematics
1 answer:
Ganezh [65]3 years ago
3 0

Answer:

a. \mathbf{Y(s) = L \{y(t)\} = \dfrac{7}{s(s+1)}+ \dfrac{e^{-3s}}{s+1}}

b. \mathbf{y(t) = \{7e^t + e^3 u (t-3)-7\}e^{-t}}

Step-by-step explanation:

The initial value problem is given as:

y' +y = 7+\delta (t-3) \\ \\ y(0)=0

Applying  laplace transformation on the expression y' +y = 7+\delta (t-3)

to get  L[{y+y'} ]= L[{7 + \delta (t-3)}]

l\{y' \} + L \{y\} = L \{7\} + L \{ \delta (t-3\} \\ \\ sY(s) -y(0) +Y(s) = \dfrac{7}{s}+ e ^{-3s} \\ \\ (s+1) Y(s) -0 = \dfrac{7}{s}+ e^{-3s} \\ \\ \mathbf{Y(s) = L \{y(t)\} = \dfrac{7}{s(s+1)}+ \dfrac{e^{-3s}}{s+1}}

Taking inverse of Laplace transformation

y(t) = 7 L^{-1} [ \dfrac{1}{(s+1)}] + L^{-1} [\dfrac{e^{-3s}}{s+1}] \\ \\ y(t) = 7L^{-1} [\dfrac{(s+1)-s}{s(s+1)}] +L^{-1} [\dfrac{e^{-3s}}{s+1}] \\ \\ y(t) = 7L^{-1} [\dfrac{1}{s}-\dfrac{1}{s+1}] + L^{-1}[\dfrac{e^{-3s}}{s+1}] \\ \\ y(t) = 7 [1-e^{-t} ] + L^{-1} [\dfrac{e^{-3s}}{s+1}]

L^{-1}[\dfrac{e^{-3s}}{s+1}]

L^{-1}[\dfrac{1}{s+1}] = e^{-t}  = f(t) \ then \ by \ second \ shifting \ theorem;

L^{-1}[\dfrac{e^{-3s}}{s+1}] = \left \{ {{f(t-3) \ \ \ t>3} \atop {0 \ \ \ \ \ \  \ \  \ t

L^{-1}[\dfrac{e^{-3s}}{s+1}] = \left \{ {{e^{(-t-3)} \ \ \ t>3} \atop {0 \ \ \ \ \ \  \ \  \ t

= e^{-t-3} \left \{ {{1 \ \ \ \ \  t>3} \atop {0 \ \ \ \ \  t

= e^{-(t-3)} u (t-3)

Recall that:

y(t) = 7 [1-e^{-t} ] + L^{-1} [\dfrac{e^{-3s}}{s+1}]

Then

y(t) = 7 -7e^{-t}  +e^{-(t-3)} u (t-3)

y(t) = 7 -7e^{-t}  +e^{-t} e^{-3} u (t-3)

\mathbf{y(t) = \{7e^t + e^3 u (t-3)-7\}e^{-t}}

You might be interested in
Yyoooo free moneys but im deleting the question if u dont say the right thing in the answer.
Zielflug [23.3K]

UR MOM

hdfbviuhfvbiseukhhgfkeujhgggedf

3 0
2 years ago
Read 2 more answers
Find the ratios for the trig functions below<br><br> sin A =<br><br> cos C =
kondor19780726 [428]

Answer:

Sin A: 35/37

Cos C: 35/37

Step-by-step explanation:

Sin A: 35/37

Cos C: 35/37

Using acronym SohCahToa we know

Sin is Opposite/Hypotenuse

Cos is Adjacent/Hypotenuse

With each problem we mark by the letter given to create adjacent side.

I hope this helps!

5 0
2 years ago
If it costs $90 to feed a family of 3 for one week. (3 points) Unit 8 lesson 4
liubo4ka [24]
X = number of weeks
1 week =
3x = $90
Divide by 3
3x/3 = x
$90/3 = $30
1 person = $30 per week
x 5
5 people = $150 per week

x6
6 people = $180 per week
3 0
3 years ago
The midpoint of AB is M (0, -3). If the coordinates of AA are (2, 1) what are the coordinates of BB?
frez [133]

Answer:

B(-2, -7)

Step-by-step explanation:

Midpoint is (0, -3)

A(x₁, y₁) B(x₂, y₂)

A(2, 1)

Midpoint = (\frac{x_{1} + x_{2} }{2}, \frac{y_{1} + y_{2} }{2} )\\\\Midpoint = (\frac{2+ x_{2} }{2}, \frac{1 + y_{2} }{2} )

(0, -3) = (\frac{2+ x_{2} }{2}, \frac{1 + y_{2} }{2} )

              \frac{2+ x_{2} }{2} = 0\\\\2 + x_{2} = 0\ \ \ \ times\ both\ sides\ by\ 2\\x_{2} = -2\ \ \ \ subtract\ both\ sides\ by\ 2

              \frac{1 + y_{2} }{2} = -3\\\\1 + y_{2} = -6\ \ \ \ times\ both\ sides\ by\ 2\\y_{2} = -7\ \ \ \ subtract\ both\ sides\ by\ 1

∴ B(-2, -7)

6 0
2 years ago
Two positive integers have a sum of 23 and a product of 126. Find the two numbers.
meriva

Answer:

SUBTRACT

Step-by-step explanation:

6 0
3 years ago
Other questions:
  • Find the missing element in the following base-rate-percentage problem.
    15·2 answers
  • How is long division of polynomials the same as long division of numbers? How is it different?
    13·2 answers
  • C or D⁉️ Help me please now
    5·1 answer
  • A sum of 17 and a difference 1
    15·2 answers
  • Find f'(x) (the derivative of f(x)) if f(x) = 7x'3 - 2x'2 + 4x - 5.
    13·1 answer
  • Find the median:51,53,49,51,53,50,54,56​
    9·2 answers
  • Which is the graph of y - 3 = -2/3(x + 6)?
    12·1 answer
  • There are 24 children at the skate park. Seven of them are on bikes, nine of
    11·2 answers
  • Savannah earns 247.00 how many hours did she work
    13·1 answer
  • Calc 3 iiiiiiiiiiiiiiiiiiiiiiiiiiii
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!