Answer:
<h2>
![7 \sqrt[3]{2x} - 6 \sqrt[3]{2x} - 6x](https://tex.z-dn.net/?f=7%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%206%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%206x)
</h2>
Solution,
![7( \sqrt[3]{2x} ) - 3( \sqrt[3]{16x} ) - 3( \sqrt[3]{8x} ) \\ = 7 \sqrt[3]{2x} - 3 \times ( \sqrt[3]{2 \times 2 \times 2 \times 2x} - 3 \times \sqrt[3]{2 \times 2 \times 2x} \\ = 7 \sqrt[3]{2x} - 3 \times (2 \sqrt[3]{2} x) - 3 \times 2x \\ = 7 \sqrt[3]{2x} - 3 \times 2 \times \sqrt[3]{2x} - 3 \times 2x \\ = 7 \sqrt[3]{2x} - 6 \sqrt[3]{2x} - 6x](https://tex.z-dn.net/?f=7%28%20%5Csqrt%5B3%5D%7B2x%7D%20%29%20-%203%28%20%5Csqrt%5B3%5D%7B16x%7D%20%29%20-%203%28%20%5Csqrt%5B3%5D%7B8x%7D%20%29%20%5C%5C%20%20%3D%207%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%203%20%5Ctimes%20%28%20%5Csqrt%5B3%5D%7B2%20%5Ctimes%202%20%5Ctimes%202%20%5Ctimes%202x%7D%20%20-%203%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B2%20%5Ctimes%202%20%5Ctimes%202x%7D%20%20%5C%5C%20%20%3D%207%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%203%20%5Ctimes%20%282%20%5Csqrt%5B3%5D%7B2%7D%20x%29%20-%203%20%5Ctimes%202x%20%5C%5C%20%20%3D%207%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%203%20%5Ctimes%202%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%203%20%5Ctimes%202x%20%5C%5C%20%20%3D%207%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%206%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%206x)
Hope this helps...
Good luck on your assignment...
Comparative relationships between numbers
Answer:
$10 per kilogram
Step-by-step explanation:
To eliminate the decimals,multiply everything by 10
0.4.........4
4.00.........40
4 kilos = $40
1 kilo = $10 (40/4)
Answer:
6.23 gallons per square foot
Step-by-step explanation:
623/1000 = 6.23
Answer:
E. 10 and 10
Step-by-step explanation:
Standard Deviation is the square root of sum of square of the distance of observation from the mean.
where,
is mean of the distribution.
Here, since standard deviation is the ratio of the distance from the mean and sample size. So for decreasing the standard deviation we should keep numerator constant and increasing the denominator.
This can be only possible in option (E).
Hence, only Option (E) is correct.