1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pantera1 [17]
3 years ago
12

Nethan made eight rose bouquets and six daffodil bouquets. Nethan only has enough flowers to make at most 20 rose or daffodil bo

uquets total. Let x represent the number of more rose bouquets and y represent the number of more daffodil bouquets that Nethan can make. Which of the following graphs best represents the relationship between x and y?

Mathematics
2 answers:
Igoryamba3 years ago
4 0
I<span> found the graph choices: </span>

<span>Given:</span>
8 rose bouquets
6 daffodil bouquets
total of 14 bouquets

enough flowers left to make maximum of 20 bouquets. 

x = additional rose bouquets
y = additional daffodil bouquets

20 maximum bouquets - 14 made bouquets = 6 additional bouquets

x + y = 6

y = 6 - x
x = 6 - y

If x = 0 then y = 6 
If x = 6 then y = 0
If x = 4 then y = 2
If x = 2 then y = 4

Pls. see attachment for the correct graph.

Anit [1.1K]3 years ago
4 0

Answer:

Whats up

The answer is C.

Just took the test

Step-by-step explanation:


You might be interested in
For any triangle ABC note down the sine and cos theorems ( sinA/a= sinB/b etc..)
SCORPION-xisa [38]

Answer:

Step-by-step explanation:

Law of sines is:

(sin A) / a = (sin B) / b = (sin C) / c

Law of cosines is:

c² = a² + b² − 2ab cos C

Note that a, b, and c are interchangeable, so long as the angle in the cosine corresponds to the side on the left of the equation (for example, angle C is opposite of side c).

Also, angles of a triangle add up to 180° or π.

(i) sin(B−C) / sin(B+C)

Since A+B+C = π, B+C = π−A:

sin(B−C) / sin(π−A)

Using angle shift property:

sin(B−C) / sin A

Using angle sum/difference identity:

(sin B cos C − cos B sin C) / sin A

Distribute:

(sin B cos C) / sin A − (cos B sin C) / sin A

From law of sines, sin B / sin A = b / a, and sin C / sin A = c / a.

(b/a) cos C − (c/a) cos B

From law of cosines:

c² = a² + b² − 2ab cos C

(c/a)² = 1 + (b/a)² − 2(b/a) cos C

2(b/a) cos C = 1 + (b/a)² − (c/a)²

(b/a) cos C = ½ + ½ (b/a)² − ½ (c/a)²

Similarly:

b² = a² + c² − 2ac cos B

(b/a)² = 1 + (c/a)² − 2(c/a) cos B

2(c/a) cos B = 1 + (c/a)² − (b/a)²

(c/a) cos B = ½ + ½ (c/a)² − ½ (b/a)²

Substituting:

[ ½ + ½ (b/a)² − ½ (c/a)² ] − [ ½ + ½ (c/a)² − ½ (b/a)² ]

½ + ½ (b/a)² − ½ (c/a)² − ½ − ½ (c/a)² + ½ (b/a)²

(b/a)² − (c/a)²

(b² − c²) / a²

(ii) a (cos B + cos C)

a cos B + a cos C

From law of cosines, we know:

b² = a² + c² − 2ac cos B

2ac cos B = a² + c² − b²

a cos B = 1/(2c) (a² + c² − b²)

Similarly:

c² = a² + b² − 2ab cos C

2ab cos C = a² + b² − c²

a cos C = 1/(2b) (a² + b² − c²)

Substituting:

1/(2c) (a² + c² − b²) + 1/(2b) (a² + b² − c²)

Common denominator:

1/(2bc) (a²b + bc² − b³) + 1/(2bc) (a²c + b²c − c³)

1/(2bc) (a²b + bc² − b³ + a²c + b²c − c³)

Rearrange:

1/(2bc) [a²b + a²c + bc² + b²c − (b³ + c³)]

Factor (use sum of cubes):

1/(2bc) [a² (b + c) + bc (b + c) − (b + c)(b² − bc + c²)]

(b + c)/(2bc) [a² + bc − (b² − bc + c²)]

(b + c)/(2bc) (a² + bc − b² + bc − c²)

(b + c)/(2bc) (2bc + a² − b² − c²)

Distribute:

(b + c)/(2bc) (2bc) + (b + c)/(2bc) (a² − b² − c²)

(b + c) + (b + c)/(2bc) (a² − b² − c²)

From law of cosines, we know:

a² = b² + c² − 2bc cos A

2bc cos A = b² + c² − a²

cos A = (b² + c² − a²) / (2bc)

-cos A = (a² − b² − c²) / (2bc)

Substituting:

(b + c) + (b + c)(-cos A)

(b + c)(1 − cos A)

From half angle formula, we can rewrite this as:

2(b + c) sin²(A/2)

(iii) (b + c) cos A + (a + c) cos B + (a + b) cos C

From law of cosines, we know:

cos A = (b² + c² − a²) / (2bc)

cos B = (a² + c² − b²) / (2ac)

cos C = (a² + b² − c²) / (2ab)

Substituting:

(b + c) (b² + c² − a²) / (2bc) + (a + c) (a² + c² − b²) / (2ac) + (a + b) (a² + b² − c²) / (2ab)

Common denominator:

(ab + ac) (b² + c² − a²) / (2abc) + (ab + bc) (a² + c² − b²) / (2abc) + (ac + bc) (a² + b² − c²) / (2abc)

[(ab + ac) (b² + c² − a²) + (ab + bc) (a² + c² − b²) + (ac + bc) (a² + b² − c²)] / (2abc)

We have to distribute, which is messy.  To keep things neat, let's do this one at a time.  First, let's look at the a² terms.

-a² (ab + ac) + a² (ab + bc) + a² (ac + bc)

a² (-ab − ac + ab + bc + ac + bc)

2a²bc

Repeating for the b² terms:

b² (ab + ac) − b² (ab + bc) + b² (ac + bc)

b² (ab + ac − ab − bc + ac + bc)

2ab²c

And the c² terms:

c² (ab + ac) + c² (ab + bc) − c² (ac + bc)

c² (ab + ac + ab + bc − ac − bc)

2abc²

Substituting:

(2a²bc + 2ab²c + 2abc²) / (2abc)

2abc (a + b + c) / (2abc)

a + b + c

8 0
3 years ago
I had $80.45 in my bank account on Monday. I deposited $20.50 on Tuesday, Wednesday, and Thursday. I then withdrew $37.25 on Fri
brilliants [131]

Answer:

$104.70

Step-by-step explanation:

The equation would be set up like this: 80.45 + 20.50(3) - 37.25. You started off with $80.45 in your bank account and deposited, or added, $20.50 every day on Tuesday, Wednesday and Thursday. That would mean you added $20.50 three times. Adding $80.45 + $20.50 + $20.50 + $20.50, simplified to $80.45 + $20.50(3)  would get you $141.95 in total. Then, on Friday, you withdraw $37.25, getting the equation $141.95 - $37.25, leaving $104.70 for the weekend.

8 0
3 years ago
Read 2 more answers
Wendell is curious how much space Jordan will have inside the doghouse to move around in. What is the volume of the
Luda [366]

Answer:

24,840 cubic inches

Step-by-step explanation:

18 x 30 = 540                        - rectangle house front surface area

540 + .5(30 x 10) = 690        - triangle house front surface area

690 x 36 = 24,840                - (rectangle + triangle surface area) x depth

7 0
3 years ago
Read 2 more answers
HELP PLEASE!
Archy [21]

Answer:

Option 2  50 ≤ s ≤ 100

Option 5 She could deposit $50

Option 6 She could deposit $75

Step-by-step explanation:

Let

s -----> amount of money Layla deposit into a saving account

we know that

25%=25/100=0.25

50%=50/100=0.50

so

s\geq 0.25*200 -----> s\geq \$50

s\leq 0.50*200 -----> s\leq \$100

The compound inequality is

\$50 \leq s\leq \$100

<em>Verify each case</em>

case 1) 25 ≤ s ≤ 50

The statement is false

see the procedure

case 2) 50 ≤ s ≤ 100

<u>The statement is True</u>

see the procedure

case 3) s ≤ 25 or s ≥ 50

The statement is false

Because is s ≤ 100 and  s ≥ 50

case 4) s ≤ 50 or s ≥ 100

The statement is false

Because is s ≤ 100 and  s ≥ 50

case 5) She could deposit $50

<u>The statement is true</u>

Because the value of s satisfy the compound inequality  \$50 \leq s\leq \$100

case 6) She could deposit $75

<u>The statement is true</u>

Because the value of s satisfy the compound inequality  \$50 \leq s\leq \$100

3 0
3 years ago
Read 2 more answers
2.5 x .27 in area model
dem82 [27]

Answer:

2.5 x 0.27 =

0.675

hope dis helps ^-^

5 0
3 years ago
Read 2 more answers
Other questions:
  • Bill wants to save up to buy a new watch which costs $235. If he already has $75 and he saves $8 each week, how many weeks will
    15·2 answers
  • The probability of being struck by lightning is 0.00016. Find the odds against being struck by lightning
    14·1 answer
  • Identify the factors of the terms of the expression.<br> 7 +60 + 16b<br> Plzzz helpppp
    15·2 answers
  • What are the coordinates (x, y) at which the graphs of 2x + 3y = 12 and 2x - y = 4 intersect?
    11·2 answers
  • How to find the area of a segment of a circle if r=8 and central angle =120 degrees. Please explain clearly and thoroughly. Will
    5·1 answer
  • Hello i want help with this
    15·1 answer
  • IS THIS CORRECT? THANK YOU
    5·2 answers
  • Find the axis of symmetry of the parabola defined by the given quadratic function.
    11·1 answer
  • 9 gal 1 qt - 5 gal 3 qt
    12·1 answer
  • Johnathan ran 400 meters in 58.01
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!