Find the sum of a finite geometric sequence from n = 1 to n = 8, using the expression −2(3)^n − 1.
1 answer:
The sum if the geometric sequence given by:
an=-2(3)^(n-1)
will be:
when:
n=1
an=-2
when n=2
a2=-6
when n=3
a3=-18
when n=4
a4=-54
when n=5
a5=-162
when n=6
a6=-486
when n=7
a7=-1458
when n=8
a8=-4374
thus the summation of the term will be:
Sn=(-4374+-1458+-486+-162+-54+-18+-6+-2)
Sn=-6560
the answer is -6560
You might be interested in
Answer:
no
Step-by-step explanation:
no no no no no no no no no no nø no no
Answer:
6 cm
Step-by-step explanation:
If you use Tangent-secant product (chapter reference), AB/AC = AD/AB so 4/2 = AD/4. AD = 8, CD = AD - AC = 8 - 2 = 6 cm.
The photo below may help you
Step-by-step explanation:
x=8-y
2x-y=7
2(8-y)-y=7
16-2y-y=7
-3y=-9
y=3
x=8-y
x=8-3=5