Answer:
The area of the floor space is equal to 5.83 sq yards.
Step-by-step explanation:
Given that,
Each row requires a section of floor that is 1 ¾ yards by 3 ⅓ yards.
We need to find how many square yards of floor space are taken up by one row of cheerleaders.
We know that, the area of a rectangle is given by :
A = lb
So,

So, the area of the floor space is equal to 5.83 sq yards.
Answer:
∠BAD=20°20'
∠ADB=34°90'
Step-by-step explanation:
AB is tangent to the circle k(O), then AB⊥BO. If the measure of arc BD is 110°20', then central angle ∠BOD=110°20'.
Consider isosceles triangle BOD (BO=OD=radius of the circle). Angles adjacent to the base BD are equal, so ∠DBO=∠BDO. The sum of all triangle's angles is 180°, thus
∠BOD+∠BDO+∠DBO=180°
∠BDO+∠DBO=180°-110°20'=69°80'
∠BDO=∠DBO=34°90'
So ∠ADB=34°90'
Angles BOD and BOA are supplementary (add up to 180°), so
∠BOA=180°-110°20'=69°80'
In right triangle ABO,
∠ABO+∠BOA+∠OAB=180°
90°+69°80'+∠OAB=180°
∠OAB=180°-90°-69°80'
∠OAB=20°20'
So, ∠BAD=20°20'
Answer:
A. 2
B. 10/3
C. 8/3
D. 2/3
Step-by-step explanation: put the whole #and make it into a fraction like this e.g.
6/1 • 1/3 = 6/3 simplifies to 2
If you mean 756.04, the answer is 756.0. 4 is closer to 0.
5 Or More, raise the score
4 Or Less, let it rest
The answer is actually choice A
---------------------------------------------------------
---------------------------------------------------------
If we add up the equations straight down we will have 0a+2b = 6
Note how adding the 'a' terms gives us 3a + (-3a) = 3a-3a = 0a. The 0a term is really 0 since 0 times anything is 0. So the 'a' terms will go away
The equation 0a+2b = 6 turns into 0+2b = 6 and that simplifies to 2b = 6
To isolate b, we divide both sides by 2
2b = 6
2b/2 = 6/2
b = 3
We can stop here since only one answer choice has b = 3, which is choice A. However, let's keep going to find the value of 'a'
Plug b = 3 into any equation with 'a' and 'b', then solve for 'a'
3a+4b = 9
3a+4*3 = 9
3a+12 = 9
3a+12-12 = 9-12
3a = -3
3a/3 = -3/3
a = -1
So a = -1 and b = 3 pair up to form (a,b) = (-1,3)
--------------------------------------
To check, plug this ordered pair back into both equations
Equation 1:
3a+4b = 9
3*(-1)+4*3 = 9
-3+12 = 9
9 = 9
Equation 1 has been checked out
Equation 2:
-3a-2b = -3
-3(-1)-2(3) = -3
3 - 6 = -3
-3 = -3
this is true as well
So this confirms that the final answer is choice A