Answer: Option (b) is the correct answer.
Explanation:
The given data is as follows.
F =
N
g = 9.8 m/s
radius =
=
= 15 cm = 0.15 m (as 1 m = 100 cm)
Formula to calculate depth is as follows.
F = 
or, h =
h =
= 751 m
Thus, we can conclude that the maximum depth in a lake to which the submarine can go without damaging the window is closest 750 m.
Answer:
Yes, it is reasonable to neglect it.
Explanation:
Hello,
In this case, a single molecule of oxygen weights 32 g (diatomic oxygen) thus, the mass of kilograms is (consider Avogadro's number):

After that, we compute the potential energy 1.00 m above the reference point:

Then, we compute the average kinetic energy at the specified temperature:

Whereas
stands for the Avogadro's number for which we have:

In such a way, since the average kinetic energy energy is about 12000 times higher than the potential energy, it turns out reasonable to neglect the potential energy.
Regards.
Answer:
e)
Explanation:
In an RC series circuit, at any time, the sum of the voltages through the resistor and the capacitor must be constant and equal to the voltage of the DC voltage source, in order to be compliant with KVL.
At= 0, as the voltage through the capacitor can't change instantaneously, all the voltage appears through the resistor, which means that a current flows, that begins to charge the capacitor, up to a point that the voltage through the capacitor is exactly equal to the DC voltage, so no current flows in the circuit anymore, and the charge in the capacitor reaches to its maximum value.
Answer:
1) In a concave mirror parallel rays falling on it converges at F and 2F.
Explanation:
Spherical mirrors can be used for magnification of images. There are basically two types of spherical mirrors and they are converging mirror and diverging mirrors. The converging mirrors are also termed as concave mirrors and its basic work is to converge or combine light rays coming from a larger distance to a single point. Mostly the light beams falling parallel to the principle axis of the concave mirror will be acting as parallel rays. And when these parallel rays fall on the mirror, the converging point can be the focal point of the mirror.
Thus the location of converging point in concave mirrors will be based on the position or distance of object from the mirror. If the object distance is very far from the twice the focal length distance of mirror, then the converging point will be the focal point or F. And if the object is placed slightly greater than twice the distance of focal point, then the image will be obtained at 2F. But the parallel beams will be converging at F and 2F.
Radio waves, Middle-C, and halitosis are not forms of light.