Answer:
Vr = 20 [km/h]
Explanation:
In order to solve this problem, we have to add the relative velocities. We must remember that velocity is a vector, therefore it has magnitude and direction. We will take the sea as the reference measurement level.
Let's take the direction of the ship as positive. Therefore the boy moves in the opposite direction (Negative) to the reference level (the sea).
![V_{r}=30-10\\V_{r}=20 [km/h]](https://tex.z-dn.net/?f=V_%7Br%7D%3D30-10%5C%5CV_%7Br%7D%3D20%20%5Bkm%2Fh%5D)
Answer:
the branch of mechanics concerned with the interaction of electric currents with magnetic fields or with other electric currents.
Explanation:
Answer:
v = 7.4 m/s
Explanation:
Given that,
Mass if a volleyball, m = 5 kg
The ball reaches a height of 2.8 m
We need to find how fast the ball is going as it bumped into the air. Ket the velocity is v. Using the conservation of energy to find it as follows :

So, the required speed is 7.4 m/s. Hence, the correct option is (b).
Answer:
6g/cm³
Explanation:
Density is the mass per unit volume of any substance. To solve this problem:
Density =
Since mass = 600g
Let us find the volume;
Volume = length x width x height
Volume = 25cm x 2cm x 2cm = 100cm³
Therefore;
Density =
= 6g/cm³
Answer:
The angle it subtend on the retina is
Explanation:
From the question we are told that
The length of the warbler is 
The distance from the binoculars is 
The magnification of the binoculars is 
Without the 8 X binoculars the angle made with the angular size of the object is mathematically represented as



Now magnification can be represented mathematically as

Where
is the angle the image of the warbler subtend on your retina when the binoculars i.e the binoculars zoom.
So

=> 

Generally the conversion to degrees can be mathematically evaluated as
