It’s already in standard form: 93,000,000
If we would put it in scientific notation though, it would be: 9.3 x10 ^7 (to the power of 7)
Answer:
Since b^2 -4ac = 256 we have 2 real distinct root roots
Step-by-step explanation:
4x^2+12x=7
We need to subtract 7 to get it in the proper form
4x^2+12x-7=7-7
4x^2+12x-7=0
The discriminant is b^2 -4ac
when the equation is ax^2 +bx+c
so a =4 b=12 and c=-7
(12)^2 - 4(4)(-7)
144 +112
256
If b^2 -4ac > 0 we have 2 real distinct roots
If b^2 -4ac = 0 we have one real root
If b^2 -4ac < 0 we have two complex root
Since b^2 -4ac = 256 we have 2 real distinct root roots
<span>1. a sine curve with amplitude 2, and period 4pi radians
</span>
the general equation of the sine curve ⇒⇒ y = a sin (nθ)
where: a is the amplitude and n = 2π/perid
∵ <span>amplitude 2, and period 4pi radians
</span>
∴ y = 2 sin (θ/2)
The correct answer is option D. y = 2 sin (θ/2)
===========================================
<span>2.The period and amplitude of the function ⇒⇒ y = 5 cos 2θ
</span>
<span>comparing with y = a cos nθ
</span>
where : a is the amplitude and n = 2π/period
<span>amplitude = 5 , period = 2π/n = 2π/2 = π
</span>
The correct answer is option B. Period: pi radians: Amplitude:5
============================================================
3. tan (2π/3) = tan 120° = -√3
120° lie in the second quadrant and its reference angle = 180° - 120° = 60°
tan function in the second quadrant is negative
∴ tan 120° = - tan 60 = -√3
The correct answer is C. -sqrt3
=====================================================
4. <span>Tan 5π/6 = tan 150° = -(√3)/3
</span>
150° lies in the second quadrant and its reference angle = 180° - 150° = 30°
tan function in the second quadrant is negative
∴ tan 150° = - tan 30 = -(√3)/3
The correct answer is <span>B.-sqrt3/3</span>
You're right, c is the answer because the function is a parabola because of the power of four
Answer:
Step-by-step explanation:
Wheres the circle
I can solve it if I can see the circle