4a + 3b - a - 5b
First, gather the like terms.
Second, subtract 4a - a to get 3a.
Third, subtract 3b - 5b to get 2b.

Answer:
3a - 2b
cos(2<em>θ</em>) + sin²(<em>θ</em>) = 0
Half-angle identity:
cos(2<em>θ</em>) + (1 - cos(2<em>θ</em>))/2 = 0
Simplify:
2 cos(2<em>θ</em>) + 1 - cos(2<em>θ</em>) = 0
cos(2<em>θ</em>) = -1
Solve for <em>θ</em> :
2<em>θ</em> = arccos(-1) + 2<em>nπ</em>
2<em>θ</em> = <em>π</em> + 2<em>nπ</em>
<em>θ</em> = <em>π</em>/2 + <em>nπ</em>
where <em>n</em> is any integer.
The midpoint is a point the divided a line into two equal parts
So +1 is the midpoint
Answer: y= -4x/3 - 4/3
Step-by-step explanation:
The equation of the line in the slope-intercept form is y=3x4−32.
The slope of the perpendicular line is negative inverse: m=−43.
So, the equation of the perpendicular line is y=−4x3+a.
To find a, we use the fact that the line should pass through the given point: −4=(−43)⋅(2)+a.
Thus, a=−43.
Therefore, the equation of the line is y=−4x3−43.