1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xz_007 [3.2K]
3 years ago
14

2) Caculate the unit rate. Paying $28 for 8 pounds of pears. What is the cost per pound of pears?

Mathematics
2 answers:
jeyben [28]3 years ago
5 0

Answer:

28/8=3.50

Step-by-step explanation:3.50 per pear.

I am Lyosha [343]3 years ago
4 0

Answer:

3.5

Step-by-step explanation:

You might be interested in
Find the derivative: y={ (3x+1)cos(2x) } / e^2x​
DochEvi [55]

Answer:

\displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring
  • Exponential Rule [Dividing]:                                                                         \displaystyle \frac{b^m}{b^n} = b^{m - n}
  • Exponential Rule [Powering]:                                                                       \displaystyle (b^m)^n = b^{m \cdot n}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule:                                                                                                         \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Quotient Rule:                                                                                                       \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Trig Derivative:                                                                                                       \displaystyle \frac{d}{dx}[cos(u)] = -u'sin(u)

eˣ Derivative:                                                                                                         \displaystyle \frac{d}{dx}[e^u] = u'e^u

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle y = \frac{(3x + 1)cos(2x)}{e^{2x}}

<u>Step 2: Differentiate</u>

  1. [Derivative] Quotient Rule:                                                                           \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - \frac{d}{dx}[e^{2x}](3x + 1)cos(2x)}{(e^{2x})^2}
  2. [Derivative] [Fraction - Numerator] eˣ derivative:                                       \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{(e^{2x})^2}
  3. [Derivative] [Fraction - Denominator] Exponential Rule - Powering:         \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  4. [Derivative] [Fraction - Numerator] Product Rule:                                       \displaystyle y' = \frac{[\frac{d}{dx}[3x + 1]cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  5. [Derivative] [Fraction - Numerator] [Brackets] Basic Power Rule:             \displaystyle y' = \frac{[(1 \cdot 3x^{1 - 1})cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  6. [Derivative] [Fraction - Numerator] [Brackets] (Parenthesis) Simplify:       \displaystyle y' = \frac{[3cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  7. [Derivative] [Fraction - Numerator] [Brackets] Trig derivative:                   \displaystyle y' = \frac{[3cos(2x) -2sin(2x)(3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  8. [Derivative] [Fraction - Numerator] Factor:                                                   \displaystyle y' = \frac{e^{2x}[(3cos(2x) -2sin(2x)(3x + 1)) - 2(3x + 1)cos(2x)]}{e^{4x}}
  9. [Derivative] [Fraction] Simplify [Exponential Rule - Dividing]:                     \displaystyle y' = \frac{3cos(2x) -2sin(2x)(3x + 1) - 2(3x + 1)cos(2x)}{e^{2x}}
  10. [Derivative] [Fraction - Numerator] Factor:                                                   \displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}

Topic: AP Calculus AB/BC

Unit: Derivatives

Book: College Calculus 10e

6 0
3 years ago
Explain how you would use a number line to find the absolute value of –12.
just olya [345]
The absolute value is 12. I don't know how you would use the number line to your advantage but that's because that's not how they taught me in school.
6 0
3 years ago
Read 2 more answers
Find the median of the data set: 27, 88, 41, 80, 60, 13, 74, 33, 80, 91, 80.
jasenka [17]

Answer:

80

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
What is the volume of the prism that is 5 meters wide, 4 meters high, and 8 meters long?
ELEN [110]

Answer:

160 cubic meters

Step-by-step explanation:

Volume = l*w*h

= 8*5*4

=40*4

=160 cubic meters

7 0
3 years ago
Read 2 more answers
if y varies directly as the cube of x, what is the value of y in these ordered pairs? (4, 16) and (2, y)
madreJ [45]

Given, y varies directly as the cube of x.

So, [tex] y=kx^3 [/tex]

By using the order pair (4, 16) we can get x=4 and y=16.

Now plug in these values in the above equation.

So, 16=k*4^3

16 = k *64

16/64 = k (By dividing each sides by 64).

So, k=1/4

So, the equation for this variation is y= 1/4*x^3

Now we need to find the value of y for x=2.

So, plug in x=2 in the above equation. Hence,

y=1/4* 2^3

=1/4*8

=8/4

=2

So, y=2

3 0
3 years ago
Other questions:
  • 1. The expression 11x2 - 12x - 10 has ___ terms and a constant of ___.
    5·2 answers
  • Two integers a and b have different signs. The absolute value of integer a is divisible by the absolute value of integer b. Find
    14·1 answer
  • A piece of fabric is 1/3 yard by 3 5/8 yards. Irma solves 1/3⋅3 5/8 to find the area of the fabric in square yards. Enter number
    14·1 answer
  • 14) If Danny has<br> of $1.00, how much change does Danny have?<br><br><br> WHATS THE ANSWER
    5·2 answers
  • Suppose payments were made at the end of each month into an ordinary annuity earning interest at the rate of 4.5%/year compounde
    5·1 answer
  • Malik Brooks works 40 hours per week, 52 weeks each year for Metro Delivery. He earns $9.15 per hour. If Malik receives a 4.9% m
    6·2 answers
  • Translate the equation using a variable.<br> "Nineteen less than one-half of a number is -13."
    9·2 answers
  • Find the domain of h(x) = 2x - 9 given a range of (-7,5,11)
    13·1 answer
  • Solve for y <br>5x-2v=15<br><br>*please help!!​
    5·1 answer
  • PLEASE HELPPPPP!!!!!!!!! (show work if you can)
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!