The question states that both parts of Noshi's desk were shaped like trapezoids and both had a height of 3.
We know that the formula for area of a trapezoid is (a+b)/2 * h, where a and b are bases of the trapezoid and h is the height. Note: This is like any other form of trying to find the area, because we are doing base times height, however, we need to divide the sum of the bases by 2 to find the average base length.
Let's call the first trapezoid on the left Trapezoid A and the second slanted trapezoid Trapezoid B.
Area of Trapezoid A = (a+b)/2 * h = (5+8)/2 * 3 = 13/2 * 3 = 6.5 * 3 = 19.5 feet
Area of Trapezoid B = (a+b)/2 * h = (4+9)/2 * 3 = 13/2 * 3 = 6.5 * 3 = 19.5 feet
To find the area of Noshi's total desk, we simply need to add the areas of Trapezoid A and Trapezoid B together.
19.5 feet + 19.5 feet = 39 feet
Therefore, the area of Noshi's desk is 39 feet.
Hope this helps! :)
Answer:
first we find the common difference.....do this by subtracting the first term from the second term. (9 - 3 = 6)...so basically, ur adding 6 to every number to find the next number.
we will be using 2 formulas....first, we need to find the 34th term (because we need this term for the sum formula)
an = a1 + (n-1) * d
n = the term we want to find = 34
a1 = first term = 3
d = common difference = 6
now we sub
a34 = 3 + (34-1) * 6
a34 = 3 + (33 * 6)
a34 = 3 + 198
a34 = 201
now we use the sum formula
Sn = (n (a1 + an)) / 2
S34 = (34(3 + 201))/2
s34 = (34(204)) / 2
s34 = 6936/2
s34 = 3468 <=== the sum of the first 34 terms:
Answer:
<em> </em><em>-</em><em>1</em>
Step-by-step explanation:
<em>here's</em><em> your</em><em> solution</em>
<em> </em><em> </em><em> </em><em> </em><em>=</em><em>></em><em> </em><em>The </em><em>value</em><em> of</em><em> x</em><em> </em><em>=</em><em> </em><em>1</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>></em><em> </em><em>The </em><em>value</em><em> of</em><em> </em><em>y </em><em>=</em><em> </em><em>2</em>
<em> </em><em> </em><em> </em><em> </em><em>=</em><em>></em><em> </em><em>we </em><em>need</em><em> to</em><em> find</em><em> </em><em>(</em><em> </em><em>x </em><em>-</em><em> </em><em>y)</em>
<em> </em><em> </em><em> </em><em> </em><em>=</em><em>></em><em> </em><em>so,</em><em> </em><em>put </em><em>the </em><em>value </em><em>of </em><em>above</em><em> </em><em>variables</em><em> </em><em>in </em><em>it</em>
<em> </em><em> </em><em> </em><em> </em><em>=</em><em>></em><em> </em><em>hence</em><em>,</em><em> </em><em>(</em><em>1</em><em> </em><em>-</em><em> </em><em>2</em><em>)</em><em> </em><em>=</em><em> </em><em>-</em><em> </em><em>1</em>
<em> </em><em> </em><em> </em><em> </em><em>=</em><em>></em><em> </em><em>-</em><em> </em><em>1</em><em> </em><em>is </em><em>correct</em><em> answer</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em>hope</em><em> it</em><em> helps</em>
I think the volume of the cone is 65.94yd because the radius is 3 and the height is 7 also 3 to the second power equals 9 then 3.14 multiplied by 9 equals 28.26 and finally 28.26 multiplied by 7/3 equals 65.94
V=3.14 x r^2 h/3
V=3.14 x 3^2 7/3