So if you want to fit the y-intercepts or "b", on the y-axis you should go by 25's [0, 25, 50, 75, 100...]
If the x-axis <u>does not have to</u> follow the same pattern (25's), you should go by 5's [0, 5, 10, 15, 20...]
y = 7x + 50
y = 2x + 175
First I would plot the y-intercepts for each equation, then plot a few points with x = 5, 10, 15 Then draw a straight line.
The point where the two lines meet/cross paths is your solution. It should be (25, 225) The x-axis is the number of miles, and the y-axis is the total cost. So Truck driver A and B would arrive/be at the same place/meet in 25 miles at the same cost of $225
The answer is c 8 in each row
Answer:
hope this helps
Step-by-step explanation:
five more: 5 +
three times the number q: 3q
Now put it together
Answer:
In mathematics, an inverse function (or anti-function) is a function that "reverses" another function: if the function f applied to an input x gives a result of y, then applying its inverse function g to y gives the result x, and vice versa, i.e., f(x) = y if and only if g(y) = x.
Step-by-step explanation:
Answer:
Line LM
Step-by-step explanation:
First, we need to know what the slope is of a line that would be perpendicular to a line with a slope of -5/6. To find this, we take the reciprocal and multiply it by -1. Therefore, the line we are looking for needs to have a slope of 6/5.
Based on the fact that the slope is positive, we can eliminate lines PQ and JK as they have a negative slope. This leaves us with lines LM and NO.
To find out whether or not it is between LM and NO, you could eyeball it by looking at the graph and simply counting which might be faster if you understand how to do that (rise/run), or you can use the pair of coordinates given to you on each line to calculate for slope.
Line LM - 
Line NO - 
Based on this, we know that line LM is perpendicular to a line that has a slope of -5/6.
<em>If you need help on calculating slope from two points, I'd suggest watching this video: </em><u>https://www.brightstorm.com/math/algebra/linear-equations-and-their-graphs/finding-the-slope-of-a-line-from-2-points-problem-1/#:~:text=Use%20the%20slope%20formula%20to,second%20points%20are%20x2%2C%20y2.</u>