Answer:
a) The sample mean is of 49 and the sample standard deviation is of 11.7.
b) The range of the true mean at 90% confidence level is of 9.62 hours.
c) The prediction interval, at a 90% confidence level, of it's failure time is between 39.38 hours and 58.62 hours.
Step-by-step explanation:
Question a:
Sample mean:
Sample standard deviation:
The sample mean is of 49 and the sample standard deviation is of 11.7.
b)Determine the range of the true mean at 90% confidence level.
We have to find the margin of error of the confidence interval. Since we have the standard deviation for the sample, the t-distribution is used.
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 6 - 1 = 5
90% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 5 degrees of freedom(y-axis) and a confidence level of . So we have T = 2.0.150
The margin of error is:
In which s is the standard deviation of the sample and n is the size of the sample. So
The range of the true mean at 90% confidence level is of 9.62 hours.
(c)If a seventh sample is tested, what is the prediction interval (90% confidence level) of its failure time.
This is the confidence interval, so:
The lower end of the interval is the sample mean subtracted by M. So it is 49 - 9.62 = 39.38 hours.
The upper end of the interval is the sample mean added to M. So it is 49 + 9.62 = 58.62 hours.
The prediction interval, at a 90% confidence level, of it's failure time is between 39.38 hours and 58.62 hours.