Answer:
Set A's standard deviation is larger than Set B's
Step-by-step explanation:
Standard deviation is a measure of variation. One way to judge the value of standard deviation is by looking at the range of the data. In general, a dataset with a smaller range will have a smaller standard deviation.
The range of data Set A is 25-1 = 24.
The range of data Set B is 18-8 = 10.
Set A's range is larger, so we expect its standard deviation to be larger.
__
The standard deviation is the root of the mean of the squares of the differences from the mean. In Set A, the differences are ±12, ±11, ±10. In Set B, the differences are ±5, ±3, ±1. We don't actually need to compute the RMS difference to see that it is larger for Set A.
Set A's standard deviation is larger than Set B's.
Answer:
We have the equation
![c_1\left[\begin{array}{c}0\\0\\0\\1\end{array}\right] +c_2\left[\begin{array}{c}0\\0\\3\\1\end{array}\right] +c_3\left[\begin{array}{c}0\\4\\3\\1\end{array}\right] +c_4\left[\begin{array}{c}8\\4\\3\\1\end{array}\right] =\left[\begin{array}{c}0\\0\\0\\0\end{array}\right]](https://tex.z-dn.net/?f=c_1%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C0%5C%5C0%5C%5C1%5Cend%7Barray%7D%5Cright%5D%20%2Bc_2%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C0%5C%5C3%5C%5C1%5Cend%7Barray%7D%5Cright%5D%20%2Bc_3%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C4%5C%5C3%5C%5C1%5Cend%7Barray%7D%5Cright%5D%20%2Bc_4%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%5C%5C4%5C%5C3%5C%5C1%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C0%5C%5C0%5C%5C0%5Cend%7Barray%7D%5Cright%5D)
Then, the augmented matrix of the system is
![\left[\begin{array}{cccc}0&0&0&8\\0&0&4&4\\0&3&3&3\\1&1&1&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D0%260%260%268%5C%5C0%260%264%264%5C%5C0%263%263%263%5C%5C1%261%261%261%5Cend%7Barray%7D%5Cright%5D)
We exchange rows 1 and 4 and rows 2 and 3 and obtain the matrix:
![\left[\begin{array}{cccc}1&1&1&1\\0&3&3&3\\0&0&4&4\\0&0&0&8\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%261%261%261%5C%5C0%263%263%263%5C%5C0%260%264%264%5C%5C0%260%260%268%5Cend%7Barray%7D%5Cright%5D)
This matrix is in echelon form. Then, now we apply backward substitution:
1.

2.

3.

4.

Then the system has unique solution that is
and this imply that the vectors
are linear independent.
Answer:
1st Option is correct
Step-by-step explanation:
Just keep adding 150 to see the results
Step-by-step explanation:
singkamas: 60 pesos
ponkan: 110 pesos
<span>It is easier to multiply. For example: 63 multiply by 7
</span><span>63 x 7 = (60+3) x 7 = 60 x 7 + 3 x 7 = 420 + 21 = 441
</span>
Another example : <span>25 x 73
</span>25 x 73 = (20+5) x (70+3) = 20 x 70 + 20x3 + 5x70 + 5x3
= 1400 + 60 + 350 + 15 = 1875